Notes on Information Flow Policies

CS 5430
May 1, 2017

Restrictions and Access Control

Data are associated with restrictions. These restrictions are usually expressed
in terms of confidentiality (e.g., who can read data), in terms of integrity (e.g.,
how much trusted data is), or in terms of privacy (e.g., what operations can be
applied on data).

Access control has been widely used to specify and enforce restrictions on
data. However, access control alone is not enough. Consider a document doc as-
sociated with an access control policy P (e.g., only Alice can read doc). Assume
that some computation is applied to doc producing several new documents that
needs to be used later. What should be the access control policy on these new
documents? A human should make this decision and should manually associate
the desired policies to the new documents.

This manual work becomes even harder, when we scale up to a system that
stores multiple pieces of data that are owned by multiple users, and supports
rich interactions between data of different users. So, access control alone does
not seem suitable for the Big Data era. Also, access control alone cannot pre-
vent leaking information through metadata, shared resources, and other covert
channels, which are channel not intended to convey information.

Information Flow Policies

Information Flow (IF) policies are proposed to address the limitations of access
control. An IF policy associated with a piece of data d specifies restrictions on
d, and on all data derived from d. For example, an IF policy for confidentiality
could specify: value v and all its derived values is allowed to be read at most
by Alice. Equivalently, we say that v is allowed to flow only to Alice.

An enforcement mechanism for IF policies automatically deduces the restric-
tions for derived data. For example, if a document doc is allowed to flow only to
Alice, then any document derived from doc is allowed to flow only to Alice, too.
Otherwise, the IF policy on doc would be violated. When documents with dif-
ferent policies are combined to produce a new document, that new document is
associated with a policy that satisfies all policies of the constituent documents.

Labels for IF policies

We use labels, which are syntactic objects, to represent IF policies. Classifica-
tions can be used as labels for information flow policies. For example, labels
U, C, S, and TS (i.e., Unclassified, Confidential, Secret, and Top Secret) or
labels L and H (i.e., Low confidentiality, High confidentiality) can be used to
represent IF policies. If some document doc is associated with C', it means that
doc and all documents derived from doc are considered Confidential (i.e., tagged
with C). Sets of principals can also be used as labels. For example, if some
document doc is associated with {Alice}, it means that doc and all documents
derived from doc can be read at most by Alice.

More expressive labels

The labels discussed above represent policies that are more restrictive than
necessary, because they impose the same restrictions to all possible derived
data. However, there are practical cases where restrictions on outputs of some
operations are different (e.g., fewer or more) than the restrictions on inputs of
these operations.

Consider, for example, operation maj that tallies votes for an election:

x = maj(v1,ve,...,Vn).

Input plaintexts are usually considered secret (i.e., of high confidentiality), but
the result x of the election is usually considered public (i.e., of low confiden-
tiality). If each vote v; is tagged with label H (which represents that v; is of
high confidentiality), then the output x, which is derived from all these votes, is
required to be tagged with H, too. But this means that cannot be considered
public. So, there is a mismatch between the restrictions imposed by the labels
of inputs to the output, and the desired restrictions to the output.
Similarly, for the encryption operation:

x = Enc(y; k).

Input votes are usually considered secret, but the ciphertext x is usually consid-
ered public. However, tagging y and k with H, implies that x is tagged with H.
Again, there is a mismatch between the imposed and the desired restrictions on
x.

Other operations may cause the restrictions imposed on outputs to increase
comparing to restrictions imposed on inputs. For example, the list of students
in CS and the list of addressed in Ithaca may be public, but the mapping of
students to home addresses should not be public. So, here, if the list of students
in CS and the list of addresses in Ithaca are tagged with L, then the resulting
list will be tagged with L. Thus, fewer restrictions than desired will be applied
to the resulting list.

So, there is a need for IF policies and labels to express how restrictions on
derived data may change based on applied operations, or based on events that
occur during execution, or based on ownership of this data.

Noninterference

Consider inputs and outputs of a program being tagged with label H or L. In-
puts tagged with H are allowed to flow only to outputs tagged with H. Equiv-
alently, inputs tagged with H are not allowed to flow to outputs tagged with L.
This implies that changing inputs tagged with H should not cause changes on
outputs tagged with L. This requirement is an instantiation of noninterference.
Noninterference is a semantic guarantee that should be offered by the enforce-
ment mechanism of IF policies. Access control does not offer a similar semantic
guarantee.
Consider, for example, the program below

Ki=h+0l1l=1+1

where variables h, h' are tagged with H and variables [, I’ are tagged with
L. Here, | and h model inputs, while I’ and A’ model outputs. This program
satisfies noninterference because changing values in h does not cause values in
" to change. However, program

U':'=h=x2

does not satisfy noninterference because changing h causes I’ to change. So,
here h is leaked to I.

More carefully, noninterference states that if two initial (or input) memories
M, Ms agree on variables tagged with L (i.e., My =5 M>), and if program
C' is executed on M; and M, to termination, then the corresponding outputs
C(M;) and C'(M3) should also agree on variables tagged with L (i.e., C(M;) =,
C(My)). Specifically:

if M1 =L MQ, then C(Ml) =L C(MQ)

The above statement of noninterference handles only programs that termi-
nate. What if a program does not terminate depending on inputs tagged with
H? Consider the following example:

while i > 5 do {skip};
i (1)
where command skip does nothing. If h > 5 is false, then I’ becomes 4. If h > 5
is true, then no value is assigned to I’. Principals observing [’ either observe 4
being assigned to I’, or no value being assigned to I’, depending on h > 5. So,
h > 5 is leaked to principals observing [’.

Termination sensitive noninterference strengthens noninterference by requir-
ing the termination behavior of the problem to not depend on secret values:

If M1 =L Mg, then
C' terminates on M, iff C terminates on My and
C(Ml) =L C(MQ)-

Program (1) does not satisfy termination sensitive noninterference, but the
following program satisfies termination sensitive noninterference:

while [> 5 do {skip};
U:=4
When information flow policies relax restrictions on derived data, and thus
allow leaking information to the output of a certain operation, the previous
statements of noninterference do not hold. Consider, for example, an informa-
tion flow policy that allows an input h tagged with H to flow to an output
" tagged with L only through the operation mod 2. According to that policy

principals observing I’ are allowed to learn whether h is even or not, but they
are not allowed to learn anything else about h. So, program

I := h mod 2 (2)
satisfies this policy, but program
I':=hmod2+h (3)

does not, because this last program leaks more information to !’ than just
h mod 2. For this particular policy, noninterference should be restated as:

If My =1, My and M1 (h) mod 2 = My(h) mod 2, then C'(M;) =1 C(Ma).

Notice that this statement of noninterference is satisfied by program (2), but it
is not satisfied by (3).

