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Restrictions on data
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Restrictions on data

• Confidentiality

– Who can read data.

• Integrity

– How much trusted data is.

• Privacy

– What operations can be applied on data.
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Access control for enforcing restrictions
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Access control for computed data
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Manual assignment 
of access control 
policies to 
computed data!
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Scaling to many pieces of data…
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Scaling to many users…
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Scaling to many interactions…
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Need to assign 
restrictions in an 
automatic way.
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Limits of access control

• Not suitable for the Big Data era.

• [Lampson 1973] Malicious program could:

– Leak information in metadata (billing reports,  
nonces chosen in protocols, ...)

– Use shared resources and OS API to encode 
information (e.g., file locking, CPU cycles)
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Covert channels: 
not intended for information 

transfer yet exploitable for that purpose 



Information Flow (IF) Policies

• An IF policy specifies restrictions on the 
associated data, and on all its derived data. 

• IF policy for confidentiality:

– Value 𝑣 and all its derived values  are allowed to be 
read at most by Alice.
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Different from the access control policy:
Value 𝑣 is allowed to be read at most by Alice.



Information Flow (IF) Policies

• An IF policy specifies restrictions on the 
associated data, and on all its derived data. 

• IF policy for confidentiality:

– Value 𝑣 and all its derived values are allowed to be 
read at most by Alice.

– Equivalently, 𝑣 is allowed to flow only to Alice.

• The enforcement mechanism automatically 
deduces the restrictions for derived data.
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Information flow policies
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Scaling to many interactions…

14



Scaling to many interactions…
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Labels to represent policies

Examples for confidentiality:

• Classifications

– Unclassified (U), Confidential (C), Secret (S),               
Top Secret (TS)

– Low confidentiality (L), High confidentiality (H)

• Sets of principals:

– {Alice, Bob}, {Alice}, {Bob}, {}
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Labels to represent policies
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More restrictive than necessary…
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x := maj( v1, v2, …, vn )
H

Wanted to 
be L!

Required to be H.

HHH



More restrictive than necessary…
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x := Enc( v; k )

Wanted to 
be L!

Required to be H.

H HH



Less restrictive than necessary…
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m := Match(students; addresses)

Wanted to 
be H!

Required 
to be L.

L LL



More expressive IF labels

Need to specify changes of restrictions based on:

• applied operations, or

• conditions on execution state, or

• ownership of values, or …

For example, a vote 𝑣𝑖 can be tagged with label:
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Satisfaction of IF policies

• Consider inputs and outputs of a program being tagged with label 
H or L.

• Inputs tagged with H are allowed to flow only to outputs tagged 
with H.

• Inputs tagged with H are not allowed to flow to outputs tagged 
with L.

• Changing input values tagged with H, should not cause changes on 
outputs tagged with L.

• This requirement is an instantiation of noninterference.

– Inputs tagged with H should not interfere with outputs tagged with L.

• Noninterference is a semantic guarantee that should be offered by 
the enforcement mechanism of IF policies.

• Access control does not offer a similar semantic guarantee.
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Noninterference 
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

• Changes on H inputs should not cause changes on L
outputs.
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Noninterference: Example 
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Noninterference: Example 
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Noninterference

• Consider a program 𝐶.

• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:

– 𝑀1 =L 𝑀2.
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𝑀1 and 𝑀2 may not agree on values of 
variables tagged with H. 



Noninterference

• Consider a program 𝐶.

• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:
– 𝑀1 =L 𝑀2.

• 𝐶(𝑀𝑖) are the observations produced by executing 𝐶 to 
termination on initial memory 𝑀𝑖 :
– final outputs, or

– intermediate and final outputs. 

• Then, observations tagged with L should be the same:
– 𝐶 𝑀1 =L 𝐶 𝑀2 .
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Noninterference

∀𝑀1, 𝑀2:   if  𝑀1 =L 𝑀2, then 𝐶 𝑀1 =L 𝐶 𝑀2 .
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For a program 𝐶 and a mapping from variables to labels in L, H :



Termination sensitive noninterference
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Termination sensitive noninterference

• If

– 𝑀1 =L 𝑀2,

• then

– 𝑪 terminates on 𝑴𝟏 iff 𝑪 terminates on 𝑴𝟐, and

– 𝐶 𝑀1 =L 𝐶 𝑀2 .
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Noninterference (variation)
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Noninterference (variation)
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Noninterference for previous example

• If

– 𝑀1 =L 𝑀2, and

– 𝑴𝟏 𝒉 𝒎𝒐𝒅 𝟐 = 𝑴𝟐 𝒉 𝒎𝒐𝒅 𝟐

• Then, 

– 𝐶 𝑀1 =L 𝐶 𝑀2 .
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More variants of noninterference

Prof. Clarkson is guilty too.

• [O'Neill, Clarkson, Chong 2006]:  a variant of 
probabilistic noninterference

• [Micinski, Fetter-Degges, Jeon, Foster, Clarkson 
2015]:  noninterference for Android apps
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Noninterference

• The more expressive the IF policies, the less 
appropriate noninterference becomes.

• Active research:

– New semantic guarantees for expressive IF policies.
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Upcoming events

• [Final exam] Please, read post on Piazza (@105) 
for important information.

Don't let school interfere with your education.
– Mark Twain
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