
CS 5430

Information-Flow Policies

Elisavet Kozyri
Spring 2017

Restrictions on data

2

Restrictions on data

• Confidentiality

– Who can read data.

• Integrity

– How much trusted data is.

• Privacy

– What operations can be applied on data.

3

Access control for enforcing restrictions

4

Access control for computed data

Doc

Can read:
Alice
Bob

Doc’ Doc’’

computation

Can read:
Alice
Bob

Can read:
Alice
Bob

Manual assignment
of access control
policies to
computed data!

5

Scaling to many pieces of data…

6

Scaling to many users…

7

Scaling to many interactions…

?

?

?

?

?

Need to assign
restrictions in an
automatic way.

8

Limits of access control

• Not suitable for the Big Data era.

• [Lampson 1973] Malicious program could:

– Leak information in metadata (billing reports,
nonces chosen in protocols, ...)

– Use shared resources and OS API to encode
information (e.g., file locking, CPU cycles)

9

Limits of access control

• Not suitable for the Big Data era.

• [Lampson 1973] Malicious program could:

– Leak information in metadata (billing reports,
nonces chosen in protocols, ...)

– Use shared resources and OS API to encode
information (e.g., file locking, CPU cycles)

10

Covert channels:
not intended for information

transfer yet exploitable for that purpose

Information Flow (IF) Policies

• An IF policy specifies restrictions on the
associated data, and on all its derived data.

• IF policy for confidentiality:

– Value 𝑣 and all its derived values are allowed to be
read at most by Alice.

11

Different from the access control policy:
Value 𝑣 is allowed to be read at most by Alice.

Information Flow (IF) Policies

• An IF policy specifies restrictions on the
associated data, and on all its derived data.

• IF policy for confidentiality:

– Value 𝑣 and all its derived values are allowed to be
read at most by Alice.

– Equivalently, 𝑣 is allowed to flow only to Alice.

• The enforcement mechanism automatically
deduces the restrictions for derived data.

12

Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

13

Scaling to many interactions…

14

Scaling to many interactions…

15

Labels to represent policies

Examples for confidentiality:

• Classifications

– Unclassified (U), Confidential (C), Secret (S),
Top Secret (TS)

– Low confidentiality (L), High confidentiality (H)

• Sets of principals:

– {Alice, Bob}, {Alice}, {Bob}, {}

16

Labels to represent policies

17

Doc
H

Doc’ Doc’’
HH

More restrictive than necessary…

18

x := maj(v1, v2, …, vn)
H

Wanted to
be L!

Required to be H.

HHH

More restrictive than necessary…

19

x := Enc(v; k)

Wanted to
be L!

Required to be H.

H HH

Less restrictive than necessary…

20

m := Match(students; addresses)

Wanted to
be H!

Required
to be L.

L LL

More expressive IF labels

Need to specify changes of restrictions based on:

• applied operations, or

• conditions on execution state, or

• ownership of values, or …

For example, a vote 𝑣𝑖 can be tagged with label:

21

H L
maj

Satisfaction of IF policies

• Consider inputs and outputs of a program being tagged with label
H or L.

• Inputs tagged with H are allowed to flow only to outputs tagged
with H.

• Inputs tagged with H are not allowed to flow to outputs tagged
with L.

• Changing input values tagged with H, should not cause changes on
outputs tagged with L.

• This requirement is an instantiation of noninterference.

– Inputs tagged with H should not interfere with outputs tagged with L.

• Noninterference is a semantic guarantee that should be offered by
the enforcement mechanism of IF policies.

• Access control does not offer a similar semantic guarantee.
22

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

• Changes on H inputs should not cause changes on L
outputs.

23

H

L

H

L

Program
Inputs Outputs

Noninterference: Example

24

H

L

H

L

H

L

H

L

1

2

3

3

3

2

5

3

ℎ
ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

ℎ
ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

The program satisfies noninterference!

Noninterference: Example

25

H

L

H

L

H

L

H

L

1

2

3

6

ℎ

𝑙′

𝑙′ ≔ ℎ ∗ 2

ℎ

𝑙′

𝑙′ ≔ ℎ ∗ 2

The program does not satisfy noninterference!

Noninterference

• Consider a program 𝐶.

• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:

– 𝑀1 =L 𝑀2.

26

𝑀1 and 𝑀2 may not agree on values of
variables tagged with H.

Noninterference

• Consider a program 𝐶.

• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:
– 𝑀1 =L 𝑀2.

• 𝐶(𝑀𝑖) are the observations produced by executing 𝐶 to
termination on initial memory 𝑀𝑖 :
– final outputs, or

– intermediate and final outputs.

• Then, observations tagged with L should be the same:
– 𝐶 𝑀1 =L 𝐶 𝑀2 .

27

Noninterference

∀𝑀1, 𝑀2: if 𝑀1 =L 𝑀2, then 𝐶 𝑀1 =L 𝐶 𝑀2 .

28

For a program 𝐶 and a mapping from variables to labels in L, H :

Termination sensitive noninterference

29

H

L

H

L

H

L

H

L

2

4

9

ℎ

𝑙′

while ℎ > 5 do
skip;

𝑙′ ≔ 4

while ℎ > 5 do
skip;

𝑙′ ≔ 4

ℎ

𝑙′

Termination sensitive noninterference

• If

– 𝑀1 =L 𝑀2,

• then

– 𝑪 terminates on 𝑴𝟏 iff 𝑪 terminates on 𝑴𝟐, and

– 𝐶 𝑀1 =L 𝐶 𝑀2 .

30

Noninterference (variation)

31

L

H

L

L

H

L

1

1

6

0

ℎ
𝑙′ ≔ ℎ 𝑚𝑜𝑑 2

𝑙′

ℎ
𝑙′ ≔ ℎ 𝑚𝑜𝑑 2

𝑙′

Noninterference (variation)

32

L

H

L

L

H

L

1

2

5

6

ℎ
𝑙′ ≔ (ℎ 𝑚𝑜𝑑 2) + ℎ

𝑙′

ℎ
𝑙′ ≔ (ℎ 𝑚𝑜𝑑 2) + ℎ

𝑙′

Noninterference for previous example

• If

– 𝑀1 =L 𝑀2, and

– 𝑴𝟏 𝒉 𝒎𝒐𝒅 𝟐 = 𝑴𝟐 𝒉 𝒎𝒐𝒅 𝟐

• Then,

– 𝐶 𝑀1 =L 𝐶 𝑀2 .

33

More variants of noninterference

Prof. Clarkson is guilty too.

• [O'Neill, Clarkson, Chong 2006]: a variant of
probabilistic noninterference

• [Micinski, Fetter-Degges, Jeon, Foster, Clarkson
2015]: noninterference for Android apps

34

Noninterference

• The more expressive the IF policies, the less
appropriate noninterference becomes.

• Active research:

– New semantic guarantees for expressive IF policies.

35

Upcoming events

• [Final exam] Please, read post on Piazza (@105)
for important information.

Don't let school interfere with your education.
– Mark Twain

36

