CS 5430
Certificates, part 2

Prof. Clarkson
Spring 2017

Review: Certificates

* Digital certificate is a signature binding together:
— identity of principal

— public key of that principal (might be encryption or
verification key)

— (maybe more)

* Notation: Cert(S; 1) is a certificate issued by principal
| for principal S
—letb=id_S, K_S, ...
— Cert(S; 1) = b, Sign(b; k_I)
— Issuer | is certifying that K_S belongs to subject id_S

Review: PKI

* System for managing distribution of certificates
* Two main philosophies:
— Decentralized: anarchy, no leaders

— Centralized: oligarchy, leadership a few elite

PKI Example 2: CAs

* Uses a centralized PKI philosophy (at least as
evolved in marketplace)

* Invented (?) by Digital [Gasser et al. 1989], used
in early Netscape browsers

* Certificate authority (CA): principal whose
purpose is to issue certificates

Using a CA

* Everyone enrolls with the CA to get a certificate
— E.g, Alice enrolls and gets Cert(Alice; CA)

* Your system comes pre-installed with CA's self-
signed certificate Cert(CA; CA)

* When you receive a message signed by Alice:
— you contact CA to get Cert(Alice; CA)

— or Alice just includes that certificate with her
message

CAs and web browsers

* Web server has certificate Cert(server; CA) installed

— Server’s identity is its URL

— CA'is a root for which Cert(CA; CA) is installed in
browser

* Browser authenticates web server
— Using server’s URL and public key from certificate
— Perhaps based on protocol from last lecture
— Perhaps based on SSL (this lecture)

Many CAs

* There can't be only one THERE GA“BE UNIYLUNE?
— No single CA is going to be trusted by all the world's

governments, militaries, businesses

— Though within an organization such trust might be possible
* So there are many

— Around 1500 observed on public internet

— Your OS and/or browser comes with some pre-installed
* Organizations act as their own CA, e.g....

— Company issues certificates to employees for VPN

— Bank issues certificates to customers

— Central bank issues certificates to other banks
— Manufacturer issues certificates to sensing devices

Demo: OS X Keychain Access

L NON Keychain Access
é Click to unlock the System Roots keychain. Q
Keychains
& login Cortifeat AAA Certificate Services
~eplifievile
2 icloud o Root certificate authority
'f‘ iClou ‘.| Expires: Sunday, December 31, 2028 at 6:59:59 PM Eastern Standard Time
(= System @ This certificate is valid
[System Roots
Name ~ Kind Expires Keychain
= AAA Certificate Services certificate Dec 31, 2028, 6:59:58 PM System Roots
] Actalis Authentication Root CA certificate Sep 22, 2030, 7:22:02 AM System Roots
5] AddTrust Class 1 CA Root certificate May 30, 2020, 6:38:31 AM System Roots
Category] AddTrust External CA Root certificate May 30, 2020, 6:48:38 AM System Roots
2 Allitems] AddTrust Public CA Root certificate May 30, 2020, 6:41:50 AM System Roots
1 Passwords] AddTrust Qualified CA Root certificate May 30, 2020, 6:44:50 AM System Roots
- s Not] Admin-Root-CA certificate Nov 10, 2021, 2:51:07 AM System Roots
ecure Notes
»] AffirmTrust Commercial certificate Dec 31, 2030, 9:06:06 AM System Roots
EJ My Certificates [5] AffirmTrust Networking certificate Dec 31, 2030, 9:08:24 AM System Roots
Keys [E] AffirmTrust Premium certificate Dec 31, 2040, 9:10:36 AM System Roots
LJ Certificates [E] AffirmTrust Premium ECC certificate Dec 31, 2040, 9:20:24 AM System Roots
] ANF Global Root CA certificate Jun 5, 2033, 1:45:38 PM System Roots
] Apple Root CA certificate Feb 8, 2035, 4:40:36 PM System Roots
] Apple Root CA - G2 certificate Apr 30, 2039, 2:10:09 PM System Roots
] Apple Root CA - G3 certificate Apr 30, 2039, 2:19:06 PM System Roots
—| Apple Root Certificate Authority certificate eb 9, , 7:18: ystem Roots
Apple Root Certifi Authori ifi Feb 9, 2025, 7:18:14 PM S R
] ApplicationCA certificate Dec 12, 2017, 10:00:00 AM System Roots
] ApplicationCA2 Root certificate Mar 12, 2033, 10:00:00 AM System Roots
] Autoridad de...nal CIF A62634068 certificate Dec 31, 2030, 3:38:15 AM System Roots
& f i : 177 items

Enrollment with a CA

* You create a key pair: you do this so that CA doesn't
learn your private key

* You generate a certificate signing request (CSR); it
contains the identity you are claiming

* You send the CSR to a CA, perhaps along with
payment

* The CA verifies your identity (maybe)

* The CA signs your key, thus creating a certificate,
and sends certificate to you

Enrollment with a CA

* You create a key pair: you do this so that CA doesn't
learn your private key

* You generate a certificate signing request (CSR); it
contains the identity you are claiming

* You send the CSR to a CA, perhaps along with
payment

* The CA verifies your identity (maybe)

* The CA signs your key, thus creating a certificate,
and sends certificate to you

Identity verification

Extended validation (EV) certificate:
— CA does extra checking of your identity
— Certificate marked as having received EV
— Web browser reflects EV mark in Ul

* Examples of extra checking:

— Verify legal existence of organization including some sort of
registration number; record legal business number as part of
subject’s identity in certificate

— Verify physical operation of organization by a site visit
— Verify phone number as listed by a public phone company
* CArecord all those data in the certificate as part of subject'’s
identity
* Example: https://www.paypal.com

Issuing certificates

Conflicting goals:
* CA private signing key must be kept

— the public verification key is pre-installed on user
systems; hard to update

— if ever leaked, signing key could be used to forge
certificates

— easy way to realize goal: keep it in cold storage
* CA private signing key must be for use
— to sign new certificates when users request them
— easy way to realize goal: keep it in computer's memory

Issuing certificates

Solution: use root and intermediate CAs

 root CA: the certificate at root of trust in a
chain; pre-installed; key kept in highly secure
storage

* intermediate CA(s): certified by root CA,
themselves certify user keys; might be run by a
different organization than root

* example: https://www.facebook.com

Authentication

_ Humans ____Machines

Humans Faces, tickets,
authenticating... FeEE3Wel(eS

Machines Passwords,
authenticating.. RaJfe]plSdgles

Secure attention
key, visual secrets

Tokens, CAs as
used in web

Success!

To publish public key, user can:
* distribute it as part of web of trust
* or engage CA to provide certificate

PROBLEMS WITH PKI

Problem 1: Revocation

* Keys (subject’s, issuer's) get compromised

* Or subject leaves an organization

* There's no perfect solution
— Fast expiration
— Certificate revocation lists (CRLs)

— Online certificate validation

Revocation

Fast expiration

* Idea:
— Validity internal is short, e.g. 10 min to 24 hr
— A kind of revocation thus happens automatically
— Any compromise is bounded

 Problem:

— CAs have to issues new certificates frequently,
including checking identities

— Machines have to update certificates frequently

Revocation

Certificate revocation lists (CRLs)

* |dea:
— CA posts list of revoked certificates

— Clients download and check every time they need to
validate certificate

* Problems:
— Clients don't (because usability)
— Or they cache, leading to TOCTOU attack

— CRL must always be available (so an attractive DoS
target)

e Chromium does this, with a CRL limited to 250kb

Revocation

Online certificate validation

e |dea:
— CA runs validation server
— Clients contact it each time to validate certificate

* Problems:

— Clients don't

— Server must always be available (so an attractive DoS
target)

— Reveals to CA which websites you want to access

Revocation

Online certificate validation

* Follow-on solution: stapling

— Certificates must be accompanied by fresh assertion from
CA that certificate is still valid

— Whoever presents certificate to client is responsible for
acquiring assertion
* Firefox does this but doesn't hard fail because
"[validation servers] aren't yet reliable enough”

— Unless web site has previously served up a certificate to
browser with Must Staple extension set

Problem 2: Authority

* CAs gorogue, get hacked, issue certificates that
they should never have issued

— e.g,, Dutch CA DigiNotar (2011), which was included
in many root sets: 500 bogus certificates issued,
including for Google, Yahoo, Tor

* Missing a means for of who may
issue certificates for which principals

Authority

There's no perfect solution

* Key pinning: upon first connection to a server, client learns a
set of public keys for server; in future connections, certificate
must contain one of those keys

* Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to be in that log;
monitor log to notice misbehavior

* Certificate Authority Authorization (CAA): piggyback on DNS
system; DNS record for entity specifies allowed CAs; a good CA
won't issue cert unless they are authorized

* DNS-based Authentication of Named Entities (DANE):
piggyback like CAA; client checks whether cert comes from
authorized CA

USING CAs IN SSL

SSL

Secure Sockets Layer (SSL)

aka Transport Layer Security (TLS)
SSL 3.1 = TLS 1.0 (1999)

— Broken by attack in 2011 based on improper choice
of IVs for CBC mode

SSL 3.2 = TLS 1.1 (2006)

— Fixes IVs

SSL 3.3 =TLS 1.2 (2008)
* Upgrades crypto primitives (AES, SHA-256, etc.)

Network stack

layer ____leg _____Comnects

Application HTTP processes
Transport TCP hosts
Internet IP networks

Link WiFi devices

Network stack

layer ____leg _____Comnects

Application HTTP processes
SSL

Transport TCP hosts

Internet IP networks

Link WiFi devices

* SSL provides secure channel atop underlying guarantees of transport layer
 HTTPS=HTTP + SSL

SSL terminology

* Record: message sent during session

e Session:
— communication channel
— between client and server

— logical

— bi-directional (and direction matters)

— optionally secured for confidentiality and/or integrity
against Dolev-Yao attacker

SSL protocols

* Handshake protocol: initial channel setup

* Record protocol: exchange of messages

Caveats:

* what follows is common way of configuring
those protocols, not the only way

* no official rationale for the protocol

Record protocol

Connection state:

* cmk: client HMAC key

* smk: server HMAC key

* cek: client symmetric encryption key
* sek: server symmetric encryption key
* civ: client IV

* siv:server |V

* cseq: client sequence number

* sseq: server sequence number

Record protocol

Directional communication:

 both client and server are meant to know the
entire state, but...

 from client to server uses cXX state
* from server to client uses sXX state

.. defends against reflection attacks

Record protocol

For client to send record to server:

1. C: t = MAC(r, cseq; cmk);
c = Enc(r, t; civ; cek);
cseq++; 1f overflow, re-key
civ = rand()
2. C -> S: c

Server to client is the same with sXX part of connection state

Handshake protocol

* Purpose:
— Establish ciphersuite
— Then establish connection state

* Ciphersuite: triple of cryptographic choices...
1. Protocol for key establishment
2. Block cipher and mode
3. PRF (typically a hash function for HMAC)
Example ciphersuites:
— RSA, AES128/CBC, SHA-256
— DH_anon, 3DES/CBC, SHA-1
— null, null, null
Henceforth assume RSA key establishment...

Handshake protocol

Warning:
e attacks on SSL sometimes involve rollback to

deprecated algorithms that your crypto library
still supports

* YOUR responsibility to make sure only current
algorithms are enabled

Handshake protocol

l. C->S: Suites C, N C { J
2. S->C: Suite S, Cert(S; CA), N_S
3. C: PS = rand(); // premaster secret

ePS = Enc(PS; K S)
4. C->S:.: ePS
5. S: PS = Dec(ePS; k_S)
6. C and S:

MS = PRF (PS, "master secret"; N C+N S);

derive connection state from MS

by splitting into bits

Handshake protocol

See online notes for some omitted details:

* Verify that client and server have agreed on same
keys

* Unilateral vs. mutual authentication:

— unilateral: server authenticates to client

— mutual: server authenticates to client and client
authenticates to server

Upcoming events

* [Fri] A4 due; happy Dragon Day!

* [next week] Happy Spring Break!

