
CS 5430

Certificates, part 2

Prof. Clarkson
Spring 2017

Review: Certificates

• Digital certificate is a signature binding together:
– identity of principal
– public key of that principal (might be encryption or

verification key)
– (maybe more)

• Notation: Cert(S; I) is a certificate issued by principal
I for principal S
– let b = id_S, K_S, …
– Cert(S; I) = b, Sign(b; k_I)
– Issuer I is certifying that K_S belongs to subject id_S

Review: PKI

• System for managing distribution of certificates
• Two main philosophies:
– Decentralized: anarchy, no leaders
– Centralized: oligarchy, leadership a few elite

PKI Example 2: CAs

• Uses a centralized PKI philosophy (at least as
evolved in marketplace)

• Invented (?) by Digital [Gasser et al. 1989], used
in early Netscape browsers

• Certificate authority (CA): principal whose
purpose is to issue certificates

Using a CA

• Everyone enrolls with the CA to get a certificate
– E.g., Alice enrolls and gets Cert(Alice; CA)

• Your system comes pre-installed with CA's self-
signed certificate Cert(CA; CA)

• When you receive a message signed by Alice:
– you contact CA to get Cert(Alice; CA)
– or Alice just includes that certificate with her

message

CAs and web browsers

• Web server has certificate Cert(server; CA) installed
– Server’s identity is its URL
– CA is a root for which Cert(CA; CA) is installed in

browser

• Browser authenticates web server
– Using server’s URL and public key from certificate
– Perhaps based on protocol from last lecture
– Perhaps based on SSL (this lecture)

• Machines are authenticating machines

Many CAs

• There can't be only one
– No single CA is going to be trusted by all the world's

governments, militaries, businesses
– Though within an organization such trust might be possible

• So there are many
– Around 1500 observed on public internet
– Your OS and/or browser comes with some pre-installed

• Organizations act as their own CA, e.g....
– Company issues certificates to employees for VPN
– Bank issues certificates to customers
– Central bank issues certificates to other banks
– Manufacturer issues certificates to sensing devices

Demo: OS X Keychain Access

Enrollment with a CA

• You create a key pair: you do this so that CA doesn't
learn your private key

• You generate a certificate signing request (CSR); it
contains the identity you are claiming

• You send the CSR to a CA, perhaps along with
payment

• The CA verifies your identity (maybe)
• The CA signs your key, thus creating a certificate,

and sends certificate to you

Enrollment with a CA

• You create a key pair: you do this so that CA doesn't
learn your private key

• You generate a certificate signing request (CSR); it
contains the identity you are claiming

• You send the CSR to a CA, perhaps along with
payment

• The CA verifies your identity (maybe)
• The CA signs your key, thus creating a certificate,

and sends certificate to you

Identity verification

• Extended validation (EV) certificate:
– CA does extra checking of your identity
– Certificate marked as having received EV
– Web browser reflects EV mark in UI

• Examples of extra checking:
– Verify legal existence of organization including some sort of

registration number; record legal business number as part of
subject’s identity in certificate

– Verify physical operation of organization by a site visit
– Verify phone number as listed by a public phone company

• CA record all those data in the certificate as part of subject's
identity

• Example: https://www.paypal.com

Issuing certificates

Conflicting goals:
• CA private signing key must be kept secret
– the public verification key is pre-installed on user

systems; hard to update
– if ever leaked, signing key could be used to forge

certificates
– easy way to realize goal: keep it in cold storage

• CA private signing key must be available for use
– to sign new certificates when users request them
– easy way to realize goal: keep it in computer's memory

Issuing certificates

Solution: use root and intermediate CAs
• root CA: the certificate at root of trust in a

chain; pre-installed; key kept in highly secure
storage

• intermediate CA(s): certified by root CA,
themselves certify user keys; might be run by a
different organization than root

• example: https://www.facebook.com

Authentication

Humans Machines

Humans
authenticating...

Faces, tickets,
passwords

Secure attention
key, visual secrets

Machines
authenticating...

Passwords,
biometrics

Tokens, CAs as
used in web

Success!

We've solved the phonebook problem!

To publish public key, user can:
• distribute it as part of web of trust
• or engage CA to provide certificate

...or, have we???

PROBLEMS WITH PKI

Problem 1: Revocation

• Keys (subject's, issuer's) get compromised
• Or subject leaves an organization

...certificates therefore need to be revoked

• There's no perfect solution
– Fast expiration
– Certificate revocation lists (CRLs)
– Online certificate validation

Revocation

Fast expiration
• Idea:
– Validity internal is short, e.g. 10 min to 24 hr
– A kind of revocation thus happens automatically
– Any compromise is bounded

• Problem:
– CAs have to issues new certificates frequently,

including checking identities
– Machines have to update certificates frequently

Revocation

Certificate revocation lists (CRLs)
• Idea:
– CA posts list of revoked certificates
– Clients download and check every time they need to

validate certificate
• Problems:
– Clients don't (because usability)
– Or they cache, leading to TOCTOU attack
– CRL must always be available (so an attractive DoS

target)
• Chromium does this, with a CRL limited to 250kb

Revocation

Online certificate validation
• Idea:
– CA runs validation server
– Clients contact it each time to validate certificate

• Problems:
– Clients don't
– Server must always be available (so an attractive DoS

target)
– Reveals to CA which websites you want to access

Revocation

Online certificate validation
• Follow-on solution: stapling
– Certificates must be accompanied by fresh assertion from

CA that certificate is still valid
– Whoever presents certificate to client is responsible for

acquiring assertion

• Firefox does this but doesn't hard fail because
"[validation servers] aren't yet reliable enough”
– Unless web site has previously served up a certificate to

browser with Must Staple extension set

Problem 2: Authority

• CAs go rogue, get hacked, issue certificates that
they should never have issued
– e.g., Dutch CA DigiNotar (2011), which was included

in many root sets: 500 bogus certificates issued,
including for Google, Yahoo, Tor

• Missing a means for authorization of who may
issue certificates for which principals

Authority

There's no perfect solution
• Key pinning: upon first connection to a server, client learns a

set of public keys for server; in future connections, certificate
must contain one of those keys

• Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to be in that log;
monitor log to notice misbehavior

• Certificate Authority Authorization (CAA): piggyback on DNS
system; DNS record for entity specifies allowed CAs; a good CA
won’t issue cert unless they are authorized

• DNS-based Authentication of Named Entities (DANE):
piggyback like CAA; client checks whether cert comes from
authorized CA

USING CAs IN SSL

SSL

Secure Sockets Layer (SSL)
• aka Transport Layer Security (TLS)
• SSL 3.1 = TLS 1.0 (1999)
– Broken by attack in 2011 based on improper choice

of IVs for CBC mode

• SSL 3.2 = TLS 1.1 (2006)
– Fixes IVs

• SSL 3.3 = TLS 1.2 (2008)
• Upgrades crypto primitives (AES, SHA-256, etc.)

Network stack

Layer e.g. Connects

Application HTTP processes
Transport TCP hosts
Internet IP networks
Link WiFi devices

Network stack

Layer e.g. Connects

Application HTTP processes
SSL

Transport TCP hosts
Internet IP networks
Link WiFi devices

• SSL provides secure channel atop underlying guarantees of transport layer
• HTTPS = HTTP + SSL

SSL terminology

• Record: message sent during session
• Session:
– communication channel
– between client and server
– logical
– bi-directional (and direction matters)
– optionally secured for confidentiality and/or integrity

against Dolev-Yao attacker

SSL protocols

• Handshake protocol: initial channel setup
• Record protocol: exchange of messages

Caveats:
• what follows is common way of configuring

those protocols, not the only way
• no official rationale for the protocol

Record protocol

Connection state:
• cmk: client HMAC key
• smk: server HMAC key
• cek: client symmetric encryption key
• sek: server symmetric encryption key
• civ: client IV
• siv: server IV
• cseq: client sequence number
• sseq: server sequence number

Record protocol

Directional communication:

• both client and server are meant to know the
entire state, but...

• from client to server uses cXX state

• from server to client uses sXX state
... defends against reflection attacks

Record protocol

For client to send record to server:

1. C: t = MAC(r, cseq; cmk);
c = Enc(r, t; civ; cek);
cseq++; // if overflow, re-key
civ = rand()

2. C -> S: c

Server to client is the same with sXX part of connection state

MAC-then-Enc

Handshake protocol

• Purpose:
– Establish ciphersuite
– Then establish connection state

• Ciphersuite: triple of cryptographic choices...
1. Protocol for key establishment
2. Block cipher and mode
3. PRF (typically a hash function for HMAC)

• Example ciphersuites:
– RSA, AES128/CBC, SHA-256
– DH_anon, 3DES/CBC, SHA-1 (beware DH_anon!)
– null, null, null

• Henceforth assume RSA key establishment...

Handshake protocol

Warning:

• attacks on SSL sometimes involve rollback to
deprecated algorithms that your crypto library
still supports

• YOUR responsibility to make sure only current
algorithms are enabled

Handshake protocol

1. C->S: Suites_C, N_C
2. S->C: Suite_S, Cert(S; CA), N_S
3. C: PS = rand(); // premaster secret

ePS = Enc(PS; K_S)
4. C->S: ePS
5. S: PS = Dec(ePS; k_S)
6. C and S:

MS = PRF(PS, "master secret"; N_C+N_S);
derive connection state from MS
by splitting into bits

Could be a chain

Handshake protocol

See online notes for some omitted details:
• Verify that client and server have agreed on same

keys
• Unilateral vs. mutual authentication:
– unilateral: server authenticates to client
– mutual: server authenticates to client and client

authenticates to server

Upcoming events

• [Fri] A4 due; happy Dragon Day!
• [next week] Happy Spring Break!

Do not believe anything just because you heard it
from a seeming authority. – The Buddha

