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Review: Authentication of humans

Categories: 
• Something you know

password, passphrase, PIN, answers to security 
questions

• Something you have
physical key, ticket, {ATM,prox,credit} card, token

• Something you are
fingerprint, retinal scan, hand silhouette, a pulse



Authentication tokens



Humans vs. machines

• At enrollment, human is issued a token
– Ranges from dumb (a physical key, a piece of paper) 

to a smart machine (a cryptographic processor)
– Token becomes attribute of human's identity

• Authentication of human reduces to 
authentication of token
– So we're halfway to authentication of machines



Engineering goals

Convenience of token matters...
• Recall criteria:
– Usability:  memoryless, scalable for users, nothing to 

carry, physically effortless, easy to learn, efficient, 
infrequent errors, easy recovery from loss

– Deployability:  accessible, low cost, server compatible, 
browser compatible, mature, non-proprietary

• What tokens usually achieve:  easy to carry, 
maintenance-free, low cost



Authentication with tokens

• Goal: authenticate human Hu to local system L using 
token T

• Threat model: eavesdropper
– may read and replay messages 
– cannot change messages during protocol execution
– not full Dolev-Yao adversary 
– motivation:  short-range radios (e.g., RFID)

• Enrollment: associate identifier id_T with identifier id_Hu



CASE STUDY 1: KEYLESS ENTRY



Keyless entry

• Into car or garage 
• Activated typically with some physical action 

(button press, handle pull)
• Provide entry past some barrier (gate, door)

• Brutally simple one-pass protocols:  only one 
message sent



Keyless entry: fixed codes

• Token stores its serial number, call it T
• Barrier stores all serial numbers for authorized tokens
• To enter:  T->B: T
• Attack:  replay:  thief sits in car nearby, records serial number, 

programs another token with same number, steals car
• Attack: brute force:  serial numbers were 16 bits, devices could 

search through that space in under an hour for a single car 
(and in a whole parking lot, could unlock some car in under a 
minute)

• Attack: insider:  serial numbers typically show up on many 
forms related to car, so mechanic, DMV, dealer's business 
office, etc. must be trusted

• Countermeasure:  nonce



“Rolling” codes
• There is a master key, mk, for the barrier
• Token stores:

– serial number T
– nonce N, which is a sequence counter
– shared key k, which is H(mk, T)

• Barrier stores:
– all those values for all authorized tokens
– as well as master key mk

• To enter:  T->B:  T, MAC(T, N; k)
– And T increments N
– So does B if MAC tag verifies

• Problem:  desynchronization of nonce
• Partial solution:  accept “rolling window” of nonces



Rolling window
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There are numerous algorithms available to use for generating the MAC, but for various reasons we have chosen the 
Advanced Encryption Standard (AES) algorithm, which is a symmetric block cipher. The AES algorithm supports key sizes of 
128, 192 and 256 bits. Its use as a MAC generator is discussed further under theheading Section 2.1.1 “Rolling Windows” on 
page 5.

Figure 2-3. Secure System with all Four Goals Satisfied 

2.1.1 Rolling Windows
The concept of simply ignoring messages having old sequential numbers leaves one problem: What if the counter value 
overflows and wraps back to 0? This section describes a solution.
Handling the sequential counter is best described by two examples, given in Figure 2-4. The first example shows a situation 
where the last received valid message had a counter value A. As there is always the possibility that the transmitter has been 
activated a number of times outside the receiver's range, the receiver must accept values up to some limit, labeled C in the 
figure. The simple approach of accepting all values larger than the last received value won't work, as is apparent in the 
second example where point A is close to the upper end of the counter value range. The dark segment from point A to C 
shows the window of acceptance for counter values. Point B is an example of a value that would be accepted while point D 
is a value that would be rejected. When a value is accepted, the window starting point moves to that point.

Figure 2-4. Rolling Window of Acceptance for Counter Values 

This scheme ensures that old messages are never accepted unless the head of the rolling window has reached the old 
counter values. By choosing a large enough counter span and limiting the window size itself, this scheme effectively 
prevents replay attacks with old messages.

Secret key

Ser.

Message:

Cmd MACSeq.
Transmitter

Receiver

Unique serial
number

Sequential
counter

List of last used
counter values

List of accepted
transmitter

List of secret keys

Secret keySecret key

Ser. CmdSeq.

Example 1

A - Value from last valid message C - End of window

B - Accepted counter values D - Rejected counter values

Example 2
0

...
n-2 n-1 1 ...

D

A

C B

0

...
n-2 n-1 1 ...

D

A C
B

Image source: Atmel



CHALLENGE-RESPONSE



Fixed challenge

Assume:  L stores a fixed challenge and response for each token, 
i.e., a set of tuples (id_T, id_Hu, c_T, r_T), and T stores r_T

1. Hu->T: I want to authenticate to L
2. T->L: id_T
3. L: look up (id_Hu, c_T, r_T) for id_T
4. L->T: c_T
5. T->L: r
6. L: id_Hu is authenticated if r=r_T

Note:  human never declares its identity
Vulnerability: replay



Unique challenge: Dig Sig

Assume:  L stores a verification key for each token, 

i.e., a set of tuples (id_T, id_Hu, K_T), and T stores signing key k_T

1. Hu->L: I want to authenticate with T
2. L: invent unique nonce N_L
3. L->T: N_L
4. T: s=Sign(N_L; k_T)
5. T->L: id_T, s
6. L: lookup (id_Hu, K_T) for id_T;

id_Hu is authenticated if Ver(N_L; s; K_T)

Quasi-problems: cost?  performance?  power?  patents?  



Unique challenge: MACs
Assume:  L stores a MAC key for each token, 
i.e., a set of tuples (id_T, id_Hu, kT), and T stores kT

1. Hu->L: I want to authenticate with T
2. L: invent unique nonce N_L
3. L->T: N_L
4. T: t=MAC(N_L; kT)
5. T->L: id_T, t
6. L: lookup (id_Hu, kT) for id_T;

id_Hu is authenticated if t=MAC(N_L; kT)

Non-problem: key distribution:  already have to physically distribute tokens
Problem we won’t solve:  key storage at L:  what if key database is stolen?



THEFT



Theft

• Expanded threat model: eavesdropper, or thief
• Countermeasure:  two-factor authentication



Two-factor with PIN
Assume:  L also stores a PIN for each token, i.e., a set of tuples (id_T, id_Hu, 
kT, pin), and T stores kT

1. Hu->L: I want to authenticate with T
2. L: invent unique nonce N_L
3. L->T: N_L
4. T->Hu: Enter PIN on my keyboard
5. Hu->T: pin
6. T: compute t=MAC(N_L, pin; kT)
7. T->L: id_T, t
8. L: lookup (id_Hu, pin, kT) for id_T;

id_Hu is authenticated 
if t=MAC(N_L, pin); kT)



Protect the PIN

From offline guessing:

• Can salt and iterate hash, as with password; T and L need to store 
the salt

• Can instead store PIN on T, which authenticates Hu with PIN 
then authenticates to L with key

From online guessing:

• Wherever PIN is stored needs to rate limit guessing
• Practical problem if PIN stored on T:  children who 

get ahold of token



REMOTE AUTHENTICATION



Remote authentication

• Expanded goal: authenticate human Hu to 
remote system S using local system L and token T

• Expanded threat model:  
– on T<->L channel:  eavesdropper, theft
– on L<->S channel:  Dolev-Yao
– L is trusted by T and S

• Countermeasure:  secure channel



Remote authentication
Assume:  S stores a set of tuples (id_T, id_Hu, kT, pin), and T stores kT

1. Hu->L: I want to authenticate with T to S
2. L and S: establish secure channel
3. S: invent unique nonce N_S
4. S->L->T: N_S
5. T->Hu: Enter PIN on my keyboard
6. Hu->T: pin
7. T: compute t=MAC(N_S, pin; kT)
8. T->L->S: id_T, t
9. S: lookup (id_Hu, pin, kT) for id_T;

id_Hu authenticated if t=MAC(N_S, pin; kT)

Note:  L is just an intermediary but could hijack session



CASE STUDY 2:  SECUREID



SecureID

• Token:  displays code that changes every minute
– LCD display
– Internal clock
– No input channel
– Can compute hashes, MACs
– Stores a secret

• Ideas used: 
– replace nonce with current time
– use L to input PIN



Hypothetical protocol
Assume:  S stores a set of tuples (id_T, id_Hu, kT, pin), and T stores kT

1. Hu->L: I want to authenticate as id_Hu to S
2. L and S: establish secure channel
3. L->Hu: Enter PIN and code on my keyboard
4. T->Hu: code = MAC(time@T, id_T; kT)
5. Hu->L: pin, code
6. L: compute h = H(pin,code)
7. L->S: id_Hu, h
8. S: lookup (pin, id_T, kT) for id_Hu;

id_Hu is authenticated 
if h=H(pin, MAC(time@S, id_T; kT))

Engineering challenge:  clock synchronization [Schneider 5.2]



CASE STUDY 3:  S/KEY



S/KEY:  Paper “token”

...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
45: SUN GENE LOU HARD ELY HOG
44: GET CANE SOY NOR MATE DUEL
43: LUST TOUT NOV HAN BACH FADE
42: HOLM GIN MOLL JAY EARN BUFF
41: KEEN ABUT GALA ASIA DAM SINK
...



One-time passwords

• A one-time password (OTP) is valid only once, the first 
time used
– Similar to changing your password with every use
– Rules out replays entirely
– But man-in-the-middle could still succeed

• Use case:  login at untrusted public machine where you 
fear keylogger

• Use case: recovery 
– "main password" is lost
– phone is lost during two-factor authentication (e.g., Google 

backup codes)
• Older use case:  send cleartext password over network



One-time passwords

• Strawman implementation:  Pre-registered OTPs
• Solution: algorithmic generation of OTPs
– SecureID can be seen as an instantiation:  each code 

is a OTP valid for only 60 sec.
– Iterated hashing is another possibility...



Hash chains

• Let Hi(x) be i iterations of H applied to x
– H0(x) = x
– Hi+1(x) = H(Hi(x))

• Hash chain:  H1(x), H2(x), H3(x), ..., Hn(x)



OTPs from hash chains

• Given a randomly chosen, large, secret seed s...
• Bad idea:  generate a sequence of OTPs as a hash chain:  

H1(s), H2(s), ..., Hn(s)
– Suppose untrusted public machine learns Hi(s)
– From then on can compute next OTP Hi+1(s) by applying H, 

because hashes are easy to compute in forward direction
– But hashes are hard to invert...

• Good idea [Lamport 1981]:  generate a sequence of OTPs 
as a reverse hash chain:  Hn(s), ..., H1(s)
– Suppose untrusted public machine learns Hi(s)
– Next password is Hi-1(s)
– Computing that is hard!



Leslie Lamport

b. 1941

Turing Award Winner 2013

For	fundamental	contributions	to	
the	theory	and	practice	of	
distributed	and	concurrent	
systems,	notably	the	invention	of	
concepts	such	as	causality	and	
logical	clocks,	safety	and	liveness,	
replicated	state	machines,	and	
sequential	consistency.



Protocol (almost)
Assume:  S stores a set of tuples (id_Hu, n_Hu, s_Hu)

1. Hu->L->S: id_Hu
2. S: lookup (n_Hu, s_Hu) for id_Hu;

let n = n_Hu;
let otp = Hn(s_Hu);
decrement stored n_Hu

3. S->L->Hu: n
4. Hu: p = Hn(s_Hu)
5. Hu->L->S: p
6. S: id_Hu is authenticated if p = otp

Problem:  S has to compute a lot of hashes if authentication is frequent



Solution to S's hash burden
• S stores last:  last successful OTP for id_Hu, where last = Hn+1(s)
• S receives next:  next attempted OTP, where if all is well next = Hn(s)
• S checks its correctness with a single hash:

H(next) = H(Hn(s)) = Hn+1(s) = last
• And if correct S updates last successful OTP:  last := next 

Next problem: what if Hu and S don't agree on what password should be 
used next?  i.e., become desynchronized
• network drops a message
• attacker does some online guessing (impersonating Hu) or spoofing 

(impersonating S)



Solution to desynchronization

• Hu and S independently store index of last used password 
from their own perspective, call them m_Hu and m_S
– Neither is willing to reuse old passwords (i.e., higher indexes)
– But both are willing to skip ahead to newer passwords (i.e., 

lower indexes)
• To authenticate:
– S requests index m_S
– Hu computes min(m_S, m_Hu), sends that along with OTP 

for it
– S and Hu adjust their stored index

Next problem:  humans can't compute an iterated hash



Solution to human computation

Pre-printed passwords:
50: H50(s)
49: H49(s)
...
1:  H1(s)

Next problem:  humans aren't good at typing long bit 
strings
Solution: represent bit strings as short words
i.e., divide hash output into chunks, use each chunk as index 
into dictionary, where each word in dictionary is fairly short



Pre-printed passwords
...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
...

Next problem:  running out of passwords:  have to bother sysadmin
to get new printed passwords periodically; might run out while 
traveling
Solution:  replace system-chosen seed with user-chosen password 
plus salt



Salted passwords as seed

• Compute OTP as Hn(pass,salt)
• Whenever Hu wants to generate new set of OTPs:
– find a local machine Hu trusts (could be offline, phone, ...)

– request new salt from S
– enter pass
– generate as many new OTPs as Hu likes by running hash 

forward
– let S know how many were generated and what the last 

one was



Final protocol
Assume:  S stores a set of tuples (id_Hu, n_S, salt, last), Hu stores (pass, n_Hu)

1. Hu->L->S: id_Hu
2. S: lookup n_S for id_Hu
3. S->L->Hu: n_S
4. Hu: n = min(n_Hu, n_S) – 1;

if n<=0 then abort
else let p = Hn(pass, salt); // lookup on paper

n_Hu := n  // cross off on paper
5. Hu->L->S: n, p
6. S: if n<n_S and Hn_S-n(p)=last

then n_S := n; 
last := p; 
id_Hu is authenticated



S/KEY

[RFC 1760]:
• Instantiation of that protocol for particular hash 

algorithms and sizes
• But same idea works for newer hashes and larger 

sizes
• Many software calculators for passwords 

available



Upcoming events

• [next Friday] A4 due

It is the part of men to fear and tremble, when the 
most mighty gods by tokens send such dreadful 

heralds to astonish us. – William Shakespeare


