CS 5430
Passwords, part 2

Prof. Clarkson
Spring 2017

Review: Authentication of humans

Categories:
* Something you know

password, passphrase, PIN, answers to security
questions

* Something you have
physical key, ticket, {ATM,prox,credit} card, token

* Something you are

fingerprint, retinal scan, hand silhouette, a pulse

Review: Password lifecycle

1. Create: user chooses password

2. Store: system stores password with user
identifier

3. Use: user supplies password to authenticate

4. Change/recover/reset: user wants or needs to
change password

2. PASSWORD STORAGE

Review: Salted hashed passwords

* Defend against offline guessing attacks

* Each user has:
— username uid
— unique salt s
— password p

* System stores: uid, s, H(s, p)

To authenticate Hu to L:

1. Hu->L: uid, p

2. L: let h = stored hashed password for uid;
let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Review: Salt

To combine with iterated hashing, include salt in first hash:

zl H(pl) ;
z2 = H(p, zl);

z10000 = H(p, z9999);
output zl1l XOR z2 XOR ... XOR z10000

PBKDF2

* Password-based key derivation function 2 [RFC
8018]

* QOutput: derived key k
* |Input:

— Password p

— Salt s

— |teration count ¢

— Key length len

— Pseudorandom function PRF: "looks random" to an
adversary that doesn't know an input called the seed

PRF

Common instantiation is HMAC
* PRF(m;s) is thus HMAC(m; s)
* That is, seed of PRF becomes key of MAC

PBKDF2

Algorithm:

e k=T || TQ@) || .. || T(n)
— enough T's to achieve desired len
— || denotes bit concatenation

. T(i) =
Is in essence a salted iterated hash...
= XOR ... XOR
= PRF(s, i; p)

= PRF()

PBKDF2

e Could useto

* F(p,s.c 1) is essentially what we agreed to store
for salted and iterated-hash protected
passwords

WiFi

— Derive long-term key from passphrase

— (later derive session keys from long-term key)

* Long-term key derivation:
— p = passphrase
— s = ssid
— c = 4096
—len =256

WiFi

* Long-term key derivation:

— PRF = HMAC with SHA-1
* WPA2 is from (pre-)2004
* SHA-1 attacks didn't appear until 2005

* “During 2004 and 2005, there were a number of attacks on SHA-
1 that reduced its perceived effective strength against collision
attacks...However, since these attacks centered on finding
collisions between values, they are not a direct security
consideration here because the collision-resistant property is
not required by the HMAC authentication scheme.” [RFC 8018]

1. PASSWORD CREATION

Who creates?

* User: typically guessable passwords
* System:

— can produce hard-to-guess passwords (e.g.,, random
ASCII character strings)

— but users can't remember them

 Administrator: reduces to one of the above

Weak passwords

Top 10 passwords in 2015: [SplashData]
123456
password
12345678
qgwerty
12345
123456789
football
1234
1234567
0. Dbaseball

=~ I A o

21: princess, 23: solo, 25: starwars

Top 20 passwords suffice to compromise 10% of accounts [Skyhigh Networks]

Strong passwords

* How to characterize strength?

* Difficulty to brute force—"strength” or "security level”
— Recall: if 2AX guesses required, strength is X
* Suppose passwords are L characters long from an alphabet
of N characters
— Then NAL possible passwords
— Solve for X in 2AX = NAL
— GetX=Llog, N

— This X is aka entropy of password

* Assuming every password is equally likely, X is the Shannon entropy of
the probability distribution (cf. Information Theory)

Entropy of passwords

NIST (2006) recommends:
* minimum of 14 bits
* but 30 bits more reasonable

* How does that work out in practice...?

Entropy of passwords

* Option A (toward 30 bits):

— 8 character passwords chosen uniformly at random
from 26 character alphabet

— entropy of 8 log, 26 = 37 bits
— but that means abcdefgh equally likely as ifhslgqz

* Option B (toward 14 bits)
— 1 word chosen at random from entire vocabulary
— average high-school graduate: 50k word vocabulary
— entropy of log, 50k = 16 bits

Entropy estimation

* Problem: guide users into choosing strong passwords
* Entropy estimates [NIST 2006 based on experiments by
Shannon]:
— (assuming English and use of 94 characters from keyboard)
— 15t character: 4 bits
— next 7 characters: 2 bits per character
— characters 9..20: 1.5 bits per character
— characters 21+: 1 bit per character

— user forced to use lower & upper case and non-alphabetics:
flat bonus of 6 bits

— prohibition of passwords found in a 50k word dictionary: 0 to
6 bits, depending on password length

Entropy estimation

But:
* [Weir et al. 2010] based on cracking real-world
passwords conclude “/NIST's] notion of

provided by password
creation policies.”

* Underlying problem: Shannon entropy not a
good predictor of how quickly attackers can
crack passwords

Password recipes

Recipes: rules for composing passwords

— e.g, must have at least one number and one punctuation symbol and one
upper case letter

Naively seems wise
But research suggests...

— Users who are annoyed by recipes chose weaker passwords

— Users pick easy-to-guess passwords that minimally comply with the recipe
Beyond recipes?

— After user picks password, into it
(which users must remember): users start choosing weaker base
passwords

can have random passwords, but users have to trust
storage of all their passwords to a program or service

— Longer memorable

O00000noooboooon

UNCOMMON -
(NON-GIBBERSH) | s
GASE LORD M
Tf‘@ U b 4d or &3
CAPS. COMHON
O ‘SUBS‘HTUTONS WERA .
00
(YU AN AOD A FEW) MORE BiTs To F%NCRPW
RACOUNT FOR THE FACT THAT THIK m)]

S ONLY ONE OF A FEw CoMMON FORMATS)

ooop J

2"= 3 pavs AT
1000 GUESSES /s
(PLAUSIBLE ATTALK ON A WEAK REMOTE
WEB SERVICE. YES, CRACKING A STOLEN

HASH 15 FASTER, BUT M NOT WHAT THE
AVERAGE USER SHOULD wogey ABOUT.)

DIFRICOLTY TO0 GUESS:

EASY

| WAS T TROMBONE? N,

TROVBADOR, AND ONE OF
THE Os WRS A ZERD?

\
AND THERE WAS
SOME SYMROL...

A\

DIFFICULTY To REMEMBER:
HARD

correct horse batterg staple

Jﬂﬁ Mjﬁf?ﬂ ;fﬁ_LU

Oooooo 0oood

-

;UJTI CIC
QO0O0L '7?7;

| |
\ FOUR RANDOM
COMMON WORDS

~ Y4 BITS OF ENTROPY
O0aaoapanooaaa

Oo0o0ooooaaan

Oooooocoonao

oOngoaaaaan
2" =550 YEARS AT
1000 GUESSES/SEC

DIFRCOLTY T0 GUESS:
HARD

DIFFICOLTY TO REMEMBER:
YOUVE ALREADY
MEMORIZED |T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TD USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT ERSY FOR COMPUTERS TO GUESS,

Recipe comparison

[Kelley et al. 2012]

* Evaluate recipes based on
— percentage of passwords cracked
— number of guesses required to crack
— for two state-of-the-art cracking algorithms, one of which is from [Weir et
al. 2010] (same paper that invalidates Shannon entropy)
* Selected recipes:
1. > 8characters
2. > 8characters, no blacklisted words ...with various blacklists

3. =8 characters, no blacklisted words from freely available 4M word
common password + dictionary word list, one uppercase, lowercase,
symbol, and digit ("comprehensive”, c8)

4. >16 characters ("passphrase”, b16)
* Results..

Recipe comparison

70%
60%
50%
40%
30%
20%
10%

, bIH

% of passwords cracked

=~ 1b16

 EOP—OT

1EO 1E2 1E4 1E6 1E8 1E1 1E12

Number of guesses (log scale)

Recipe comparison

to crack
passwords

— Doesn’t that contradict [Weir 2010]?

— No: even if NIST's Shannon entropy estimates are
quantitatively invalid in general, c8 in particular is hard to
crack

e But to crack

— Threat to validity: maybe state-of-art crackers would improve
to handle passphrases if people were required to use them

* And [Komanduri et al. 2011]:

— Easier to create
— Easier to remember

Password lifecycle

1. Create: user chooses password

2. Store: system stores password with user
identifier

3. Use: user supplies password to authenticate

4. Change/recover/reset: user wants or needs to
change password

Beyond passwords?

Passwords are

Passwords are

Can we do better?

Criteria: [Bonneauetal. 2012]

— Security
— Usability
— Deployability

Security

* Physical observation

* Targeted impersonation
* Online guessing

* Offline guessing

* Internal observation

* Leaks

* Phishing

* Theft

* Trusted third party

* Privacy

Usability

* Memoryless

* Scalable for users

* Nothing to carry

* Physically effortless

* Easy to learn

* Efficient

* Infrequent errors

* Easy recovery from loss

Deployability

* Accessible

* Cost

* Server compatible
* Browser compatible
* Mature

* Non-proprietary

Schemes to replace passwords

* Password managers

* Proxies

* Federated identity management
* Graphical

* Cognitive

* Paper tokens

* Visual cryptography

* Hardware tokens

* Phone-based

* Biometric

Schemes to replace passwords

[Bonneau et al. 2012]:

Most schemes do better than passwords on
Some schemes do better and some worse on

Every scheme does worse than passwords on

Passwords are here to stay, for now

Schemes offering some variation of single sign on
seem to offer best improvements in security and
usability...

Single sign on (SSO)

* The world without SSO: User enrolls with many service
providers (SP), shares authentication secrets, e.g. password,
with each

— common scenario: user registers same or predictably modified
password with each SP

— products even exist to automatically synchronize passwords across
SPs

* With SSO: user authenticates only once with SSO service,
thereafter SSO manages authentication to SPs

— user has potentially multiple identities with SSO
— user has potentially multiple identities with SPs
— SSO trivially can impersonate user

Single sign on

Varieties of SSO: [Pashalidis and Mitchell 2003]

* Pseudo SSO: user authenticates to SSO, it uses
SP's own authentication mechanism to
authenticate on behalf of user

* True SSO: user authenticates to SSO, it asserts
user's identity to SP

Pseudo SSO

* User selects identity to authenticate to SSO

e SSO stores user's secrets to authenticate on
behalf of user to a particular identity at SP

* Local vs. remote/proxy...

Local pseudo SSO

e SSO service is local to user's machine
— Typically an encrypted password DB

— Degree of automation might vary
* Example: password managers

* Since SSO service must present user's secrets to
SP, with
those cleartext secrets

Proxy pseudo SSO

e SSO service Is on remote server
— Typically fully automated, even invisible to user

— Authentication to SP is redirected (e.g. HTTP 302) to
or intercepted by proxy

 Local machine doesn’t have access to secrets, but

* Closest example: web browsers with auto-fill and
cross-machine synch capabilities

True SSO

* User selects identity to authenticate to SSO

* SSO asserts user's identity to SPs

— SP is being notified of authentication rather than deciding
itself

— notion of identity might vary between SPs

* Local true SSO: SSO is under physical control of user (less
common)

— could build off of trusted cryptographic co-processor to take
control away from user

* Proxy true SSO: external proxy brokers between users and
SP

— Examples: Kerberos, Microsoft Passport

Difficulty of proxy true SSO

* SSO and SPs have a trust relationship, supported by
— agreement about rights and responsibilities
— secure communication channel
— countermeasures to ensure SSO is not compromised

e SSO must define:

— uniform meaning for attributes used in identities
— accuracy standard for attributes

— how to exchange and store secrets

— obligations of SPs

— legal instrument for accountability

Upcoming events

* [today] A4 out

Humans are...large, expensive to maintain, difficult
to manage, and they pollute the environment. It is
astonishing that these devices continue to be
manufactured and deployed. But they are
sufficiently pervasive that we must design our
protocols around their limitations.

— Kaufman, Perlman, and Speciner

