
CS 5430

Passwords, part 2

Prof. Clarkson
Spring 2017

Review: Authentication of humans

Categories:
• Something you know

password, passphrase, PIN, answers to security
questions

• Something you have
physical key, ticket, {ATM,prox,credit} card, token

• Something you are
fingerprint, retinal scan, hand silhouette, a pulse

Review: Password lifecycle

1. Create: user chooses password
2. Store: system stores password with user

identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

2. PASSWORD STORAGE

Review: Salted hashed passwords
• Defend against offline guessing attacks
• Each user has:

– username uid
– unique salt s
– password p

• System stores: uid, s, H(s, p)

To authenticate Hu to L:
1. Hu->L: uid, p
2. L: let h = stored hashed password for uid;

let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Review: Salt

To combine with iterated hashing, include salt in first hash:

z1 = H(p, s);
z2 = H(p, z1);
...
...
z10000 = H(p, z9999);
output z1 XOR z2 XOR ... XOR z10000

this idea used in widely-deployed algorithm for deriving
encryption keys from passwords...

PBKDF2

• Password-based key derivation function 2 [RFC
8018]

• Output: derived key k
• Input:
– Password p
– Salt s
– Iteration count c
– Key length len
– Pseudorandom function PRF: "looks random" to an

adversary that doesn't know an input called the seed

PRF

Common instantiation is HMAC
• PRF(m; s) is thus HMAC(m; s)
• That is, seed of PRF becomes key of MAC

PBKDF2

Algorithm:
• k = T(1) || T(2) || ... || T(n)
– enough T's to achieve desired len
– || denotes bit concatenation

• T(i) = F(p, s, c, i)
– F is in essence a salted iterated hash...

• F(p, s, c, i) = U(1) XOR ... XOR U(c)
– U(1) = PRF(s, i; p)
– U(j) = PRF(U(j-1); p)

PBKDF2

• Could use to store passwords
• F(p,s,c,1) is essentially what we agreed to store

for salted and iterated-hash protected
passwords

WiFi

• WiFi WPA2 uses PBKDF2
– Derive long-term key from passphrase
– (later derive session keys from long-term key)

• Long-term key derivation:
– p = passphrase
– s = ssid
– c = 4096
– len = 256

WiFi

• Long-term key derivation:
– PRF = HMAC with SHA-1

• WPA2 is from (pre-)2004
• SHA-1 attacks didn't appear until 2005
• Protocols live forever!
• “During 2004 and 2005, there were a number of attacks on SHA-

1 that reduced its perceived effective strength against collision
attacks…However, since these attacks centered on finding
collisions between values, they are not a direct security
consideration here because the collision-resistant property is
not required by the HMAC authentication scheme.” [RFC 8018]

1. PASSWORD CREATION

Who creates?

• User: typically guessable passwords
• System:
– can produce hard-to-guess passwords (e.g., random

ASCII character strings)
– but users can't remember them

• Administrator: reduces to one of the above

Weak passwords
Top 10 passwords in 2015: [SplashData]

1. 123456
2. password
3. 12345678
4. qwerty
5. 12345
6. 123456789
7. football
8. 1234
9. 1234567
10. baseball

21: princess, 23: solo, 25: starwars

Top 20 passwords suffice to compromise 10% of accounts [Skyhigh Networks]

Strong passwords

• How to characterize strength?
• Difficulty to brute force—"strength" or "security level"
– Recall: if 2^X guesses required, strength is X

• Suppose passwords are L characters long from an alphabet
of N characters
– Then N^L possible passwords
– Solve for X in 2^X = N^L
– Get X = L log2 N
– This X is aka entropy of password

• Assuming every password is equally likely, X is the Shannon entropy of
the probability distribution (cf. Information Theory)

Entropy of passwords

NIST (2006) recommends:
• minimum of 14 bits
• but 30 bits more reasonable

• How does that work out in practice...?

Entropy of passwords

• Option A (toward 30 bits):
– 8 character passwords chosen uniformly at random

from 26 character alphabet
– entropy of 8 log2 26 ≈ 37 bits
– but that means abcdefgh equally likely as ifhslgqz

• Option B (toward 14 bits)
– 1 word chosen at random from entire vocabulary
– average high-school graduate: 50k word vocabulary
– entropy of log2 50k ≈ 16 bits

Entropy estimation

• Problem: guide users into choosing strong passwords
• Entropy estimates [NIST 2006 based on experiments by

Shannon]:
– (assuming English and use of 94 characters from keyboard)
– 1st character: 4 bits
– next 7 characters: 2 bits per character
– characters 9..20: 1.5 bits per character
– characters 21+: 1 bit per character
– user forced to use lower & upper case and non-alphabetics:

flat bonus of 6 bits
– prohibition of passwords found in a 50k word dictionary: 0 to

6 bits, depending on password length

Entropy estimation

But:
• [Weir et al. 2010] based on cracking real-world

passwords conclude "[NIST's] notion of password
entropy...does not provide a valid metric for
measuring the security provided by password
creation policies."

• Underlying problem: Shannon entropy not a
good predictor of how quickly attackers can
crack passwords

Password recipes
• Recipes: rules for composing passwords

– e.g., must have at least one number and one punctuation symbol and one
upper case letter

• Naively seems wise
• But research suggests...

– Users who are annoyed by recipes chose weaker passwords
– Users pick easy-to-guess passwords that minimally comply with the recipe

• Beyond recipes?
– After user picks password, system inserts mandatory randomness into it

(which users must remember): users start choosing weaker base
passwords

– Password wallets: can have random passwords, but users have to trust
storage of all their passwords to a program or service

– Longer memorable passphrases...

Recipe comparison
[Kelley et al. 2012]
• Evaluate recipes based on

– percentage of passwords cracked
– number of guesses required to crack
– for two state-of-the-art cracking algorithms, one of which is from [Weir et

al. 2010] (same paper that invalidates Shannon entropy)
• Selected recipes:

1. ≥ 8 characters
2. ≥ 8 characters, no blacklisted words ...with various blacklists
3. ≥ 8 characters, no blacklisted words from freely available 4M word

common password + dictionary word list, one uppercase, lowercase,
symbol, and digit ("comprehensive", c8)

4. ≥ 16 characters ("passphrase", b16)
• Results...

Recipe comparison

b8s
b8
blE

c8
b16

blM

blH

d8

%
 o

f p
as

sw
or

ds
 c

ra
ck

ed

Number of guesses (log scale)

70%

60%

50%

40%

30%

20%

10%

1E0 1E2 1E4 1E6 1E8 1E10 1E12

Figure 2. The number of passwords cracked vs. the number of guesses,
per condition, for experiment P4. This experiment uses the Weir calculator
and trains on a variety of publicly available data.

passwords from each of our eight conditions. We test on 500
other passwords from those conditions, with two-fold cross-
validation for a total of 1000 test passwords. The results
from these experiments are shown in Figures 1 and 2.

As these figures suggest, which password-composition
policy is best at resisting guessing attacks depends on
how many guesses an attacker will make. At one million
and one billion guesses in both experiments, significantly
fewer blacklistHard and comprehensive8 passwords were
guessed than in any other condition.3 At one billion guesses
in experiment E, 1.4, 2.9, 9.5, and 40.3% of passwords
were cracked in comprehensive8, blacklistHard, basic16, and
basic8, respectively.

As the number of guesses increases, basic16 begins to
outperform the other conditions. At one trillion guesses, sig-
nificantly fewer basic16 passwords were cracked than com-
prehensive8 passwords, which were cracked significantly
less than any other condition. After exhausting the Weir-
algorithm guessing space in both experiments, basic16 re-
mains significantly hardest to crack. Next best at resisting
cracking were comprehensive8 and blacklistHard, perform-
ing significantly better than any other condition. Condition
comprehensive8 was significantly better than blacklistHard
in experiment P4 but not in experiment E. In experiment
E, 14.6, 26.4, 31.0% of passwords were cracked in basic16,
comprehensive8, and blacklistHard, respectively; in contrast,
63.0% of basic8 passwords were cracked.

Although guessing with the Weir algorithm proved more
effective, we also compared the conditions using BFM. The
findings (shown in Figure 3) are generally consistent with
those discussed above: basic16 performs best.

In prior work examining memorability and usability for
much of this dataset, we found that while in general less
secure policies are more usable, basic16 is more usable
than comprehensive8 by many measures [46]. This suggests
basic16 is an overall better choice than comprehensive8.

3All comparisons in Sections V-A, V-B, and V-C tested using PHFET,
significance level ↵ = 0.05.

b8s
b8blE
c8

b16

blM

blH
d8

%
 o

f p
as

sw
or

ds
 c

ra
ck

ed

Number of guesses (log scale)

100%

80%

60%

40%

20%

1E6 1E12 1E18 1E24 1E30 1E36

Figure 3. The number of passwords cracked vs. the number of guesses,
using the BFM calculator trained on both our data and public data (B2). The
red vertical line at 50 trillion guesses facilitates comparison with the Weir
experiments. We stopped the Weir calculator at this point (as described in
Section IV-A3), but because the BFM algorithm is so much less efficient,
we ran it for many more guesses in order to collect useful data.

It is important to note that 16-character-minimum policies
are rare in practice. Hence, current guessing algorithms,
including the Weir algorithm, are not built specifically with
them in mind. Although we do not believe this affects our
overall findings, it may merit further investigation.

B. Effects of training-data selection

Like most practical cracking algorithms, the ones we use
rely on training data to determine guessing order. As a result,
it is important to consider how the choice of training data
affects the success of password guessing, and consequently
the guess resistance of a set of passwords. To address this,
we examine the effect of varying the amount and source of
training data on both total cracking success and on cracking
efficiency. Interestingly, we find that the choice of training
data affects different password-policy conditions differently;
abundant, closely matched training data is critical when
cracking passwords from harder-to-guess conditions, but less
so when cracking passwords from easier ones.

For purposes of examining the impact of training data, the
password-policy conditions we consider divide fairly neatly
into two groups. For the rest of this section, we will refer to
the harder-to-guess conditions of comprehensive8, basic16,
and blacklistHard as group 1, and the rest as group 2.
Training with general-purpose data. We first measure,
via three experiments, the effect of increasing the amount
and variety of training data. Experiment P3 was trained on
public data including the MySpace and RockYou password
lists as well as the inflection list and simple dictionary, and
tested on 1000 passwords from each of our eight conditions.
Experiment P4, as detailed in Section V-A, was trained on
everything from P3 plus the paid Openwall list. Experiment
E, also described in V-A, used everything from P4 plus
500 passwords from each of our conditions, using two-fold
cross-validation. Figure 4 shows how these three training
sets affect four example conditions, two from each group.

Recipe comparison

• Comprehensive recipe (c8) makes it hard to crack
passwords
– Doesn’t that contradict [Weir 2010]?
– No: even if NIST's Shannon entropy estimates are

quantitatively invalid in general, c8 in particular is hard to
crack

• But passphrases (b16) aren't that much easier to crack
– Threat to validity: maybe state-of-art crackers would improve

to handle passphrases if people were required to use them
• And passphrases are more usable [Komanduri et al. 2011]:
– Easier to create
– Easier to remember

Password lifecycle

1. Create: user chooses password
2. Store: system stores password with user

identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

Beyond passwords?

• Passwords are tolerated or hated by users
• Passwords are plagued by security problems
• Can we do better?

• Criteria: [Bonneau et al. 2012]
– Security
– Usability
– Deployability

...criteria are worth studying for security in general

Security

• Physical observation
• Targeted impersonation
• Online guessing
• Offline guessing
• Internal observation
• Leaks
• Phishing
• Theft
• Trusted third party
• Privacy

Usability

• Memoryless
• Scalable for users
• Nothing to carry
• Physically effortless
• Easy to learn
• Efficient
• Infrequent errors
• Easy recovery from loss

Deployability

• Accessible
• Cost
• Server compatible

• Browser compatible
• Mature
• Non-proprietary

Schemes to replace passwords

• Password managers
• Proxies
• Federated identity management
• Graphical
• Cognitive
• Paper tokens
• Visual cryptography
• Hardware tokens
• Phone-based
• Biometric

Schemes to replace passwords

[Bonneau et al. 2012]:
• Most schemes do better than passwords on security
• Some schemes do better and some worse on

usability
• Every scheme does worse than passwords on

deployability
• Passwords are here to stay, for now
• Schemes offering some variation of single sign on

seem to offer best improvements in security and
usability...

Single sign on (SSO)

• The world without SSO: User enrolls with many service
providers (SP), shares authentication secrets, e.g. password,
with each
– common scenario: user registers same or predictably modified

password with each SP
– products even exist to automatically synchronize passwords across

SPs
• usability trumps security

• With SSO: user authenticates only once with SSO service,
thereafter SSO manages authentication to SPs
– user has potentially multiple identities with SSO
– user has potentially multiple identities with SPs
– SSO trivially can impersonate user

Single sign on

Varieties of SSO: [Pashalidis and Mitchell 2003]
• Pseudo SSO: user authenticates to SSO, it uses

SP's own authentication mechanism to
authenticate on behalf of user

• True SSO: user authenticates to SSO, it asserts
user's identity to SP

Pseudo SSO

• User selects identity to authenticate to SSO
• SSO stores user's secrets to authenticate on

behalf of user to a particular identity at SP
• Local vs. remote/proxy...

Local pseudo SSO

• SSO service is local to user's machine
– Typically an encrypted password DB
– Degree of automation might vary

• Example: password managers
• Since SSO service must present user's secrets to

SP, user must trust SSO & local machine with
those cleartext secrets

Proxy pseudo SSO

• SSO service is on remote server
– Typically fully automated, even invisible to user
– Authentication to SP is redirected (e.g. HTTP 302) to

or intercepted by proxy

• Local machine doesn’t have access to secrets, but
remote service is trusted with cleartext secrets

• Closest example: web browsers with auto-fill and
cross-machine synch capabilities

True SSO

• User selects identity to authenticate to SSO
• SSO asserts user's identity to SPs
– SP is being notified of authentication rather than deciding

itself
– notion of identity might vary between SPs

• Local true SSO: SSO is under physical control of user (less
common)
– could build off of trusted cryptographic co-processor to take

control away from user
• Proxy true SSO: external proxy brokers between users and

SP
– Examples: Kerberos, Microsoft Passport

Difficulty of proxy true SSO

• SSO and SPs have a trust relationship, supported by
– agreement about rights and responsibilities
– secure communication channel
– countermeasures to ensure SSO is not compromised

• SSO must define:
– uniform meaning for attributes used in identities
– accuracy standard for attributes
– how to exchange and store secrets
– obligations of SPs
– legal instrument for accountability

Upcoming events

• [today] A4 out

Humans are...large, expensive to maintain, difficult
to manage, and they pollute the environment. It is

astonishing that these devices continue to be
manufactured and deployed. But they are

sufficiently pervasive that we must design our
protocols around their limitations.
– Kaufman, Perlman, and Speciner

