
CS 5430

Passwords

Prof. Clarkson
Spring 2017

Review: Authentication of humans

Categories: [IBM, TR G520-2169, 1970]
• Something you know

password, passphrase, PIN, answers to security
questions

• Something you have
physical key, ticket, {ATM,prox,credit} card, token

• Something you are
fingerprint, retinal scan, hand silhouette, a pulse

Password lifecycle

1. Create: user chooses password
2. Store: system stores password with user

identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

4. PASSWORD CHANGE

Password change

Motivated by...
• User forgets password (maybe just recover

password)
• System forces password expiration
– Naively seems wise
– Research suggests otherwise [see Cranor 2016]:

• When users do change passwords, they change them
predictably

• Foreknowledge of expiration causes users to choose weaker
passwords

Digression: Password research

Where to get password corpus for research?
• Pay users to participate in experiments
– Validity? low-stakes passwords might be different than

high-stakes

• Use cracked password databases posted by attackers
– Validity? you get only the (more) easily cracked

passwords

• Participate with IT departments to run approved
code against plaintext passwords

Password change

Motivated by...
• Administrator forces password change
– Perhaps intrusion or weak password detected

• Attacker learns password:
– Social engineering: deceitful techniques to manipulate a

person into disclosing information
– Online guessing: attacker uses authentication interface to

guess passwords
– Offline guessing: attacker acquires password database for

system and attempts to crack it

Change mechanisms

• Tend to be more vulnerable than the rest of the
authentication system
– Not designed or tested as well
– Have to solve the authentication problem without

the benefit of a password

• Two common mechanisms:
– Security questions
– Emailed passwords

Security questions

• Something you know: attributes of identity
established at enrollment

• Pro: you are unlikely to forget answers
• Assumes: attacker is unlikely to be able to

answer questions
• Con: might not resist targeted attacks
• Con: linking is a problem; same answers re-used

in many systems

Emailed password

• Might be your old password or a new temporary
password
– one-time password: valid for single use only, maybe

limited duration
• Something you know: emailed password
• Assumes: attacker is unlikely to have compromised

your email account
• Assumes: email service correctly authenticates you
• Something you <?>: however you authenticated to

email

3. PASSWORD USAGE

When authentication fails

• Guiding principle: the system might be under
attack, so don't make the attacker's job any easier

• Don't leak valid usernames:
– Prompt for username and password in parallel
– Don't reveal which was bad

• Rate limit, and eventually disable
• Record failed attempts and review
– Perhaps in automated way by administrators
– Perhaps manually by user at next successful login

Mutual authentication

• Before entering their password, the user ought to be
authenticating the system itself: mutual authentication

• Some mechanisms:
– Secure attention key: key (or key sequence) that OS itself

detects and handles
• e.g., Ctrl+Alt+Del in Windows
• Defends against login spoofing
• Provides a trusted path

– Visual secrets: user and system share a secret image
• User enters username; system retrieves and displays image
• User authenticates image before entering password
• Makes phishing attacks harder but not impossible: if users can't or

won't discern who is on the other side, man-in-the-middle attack will
succeed anyway

2. PASSWORD STORAGE

Storage by humans

• To keep identities independent, humans should
have separate password for every identity

• But humans have little memory capacity
• So we...
– reuse passwords across systems
– record passwords either physically or digitally
– both introduce vulnerabilities (come back to this

next lecture)

Storage by machines

• Passwords typically stored in a file or database
indexed by username

• Strawman idea: store passwords in plaintext
– requires perfect authorization mechanisms
– requires trusted system administrators
– ...

• In the real world, password files get stolen

Storage by machines

• Want: a function f such that...
1. easy to compute and store f(p) for a password p
2. hard given disclosed f(p) for attacker to recover p
3. hard to trick system by finding password q s.t. q != p yet

f(p) = f(q) [stated incorrectly during lecture; now
fixed]

• Cryptographic hash functions suffice!
– one-way property gives (1) and (2)
– collision resistance gives (3)

• So would encryption, but then the key has to live
somewhere

Hashed passwords
• Each user has:

– username uid
– password p

• System stores: uid, H(p)
• Assume: human Hu authenticating to a local machine L over trusted

secure channel (e.g., keyboard)

To authenticate Hu to L:
1. Hu->L: uid, p
2. L: let h = stored hashed password for uid;

if h = H(p)
then uid is authenticated

Hashed passwords

To authenticate Hu to remote server S using local machine L:

1. Hu->L: uid, p
2. L and S: establish secure channel
3. L->S: uid, p
4. S: let h = stored hashed password for uid;

if h = H(p)
then uid is authenticated

Hashed passwords

• Why not 3’. L->S: uid, H(p)?
• Counterintuitive: From user’s perspective, sending

plaintext password is better!
– When password database leaked, 3’ immediately enables

attacker to authenticate, whereas 3 forces attacker to
invert hash

• From the two machines’ perspectives, about the
same: one hash computation

• From DY adversary’s perspective, the same: can
replay either message if security of channel is broken

Hashed passwords are still vulnerable

Assume: attacker does learn password file (offline
guessing attack)
• Hard to invert: i.e., given H(p) to compute p
• But what if attacker didn't care about inverting

hash on arbitrary inputs?
– i.e., only have to succeed on a small set of p's: p1, p2,

..., pn

• Then attacker could build a dictionary...

Dictionary attacks

Dictionary:
– p1, H(p1)
– p2, H(p2)
– ...
– pn, H(pn)

• Dictionary attack: lookup H(p) in dictionary to
find p

• And it works because most passwords chosen by
humans are from a relatively small set

Typical passwords

[Schneier quoting AccessData in 2007]:
• 7-9 character root plus a 1-3 character

appendage
– Root typically pronounceable, though not necessarily

a real word
– Appendage is a suffix (90%) or prefix (10%)

• Dictionary of 1000 roots plus 100 suffixes (= 100k
passwords) cracks about 24% of all passwords

Typical passwords

[Schneier quoting AccessData in 2007]:
• More sophisticated dictionaries crack about 60%

of passwords within 2-4 weeks
• Given biographical data (zip code, names, etc.)

and other passwords of a user...
– success rate goes up a little
– time goes down to days or hours

Typical passwords

[Schneier quoting AccessData in 2007]:
• For comparison: a scan of every printable

character string on your hard drive (including
free space, swap files, etc.) breaks >50% of
passwords
– OS and applications leave secrets sitting around

...defense against offline guessing?

Defense 1: slow down

• Vulnerability: hashes are easy to compute
• Countermeasure: hash functions that are slow to

compute
– Slow hash wouldn't bother user: delay in logging hardly

noticeable
– But would bother attacker constructing dictionary: delay

multiplied by number of entries
– Ideally, enough to make constructing a large dictionary

prohibitively expensive

• Examples: crypt, bcrypt, scrypt, PBKDF2, Argon2, ...

Slowing down fast hashes
• Given a fast hash function...
• Slow it down by iterating it many times:

z1 = H(p);
z2 = H(p, z1);
...
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

• Number of iterations is a parameter to control slowdown
– originally thousands
– current thinking is 10s of thousands

• Aka key stretching

Defense 2: add salt

• Vulnerability: one dictionary suffices to attack
every user

• Vulnerability: passwords chosen from small
space

• Countermeasure: include a unique system-
chosen nonce as part of each user's password
– make every user's stored hashed password different,

even if they chose the same password
– make passwords effectively be from larger space

Salted hashed passwords
• Each user has:

– username uid
– unique salt s
– password p

• System stores: uid, s, H(s, p)

To authenticate Hu to L:
1. Hu->L: uid, p
2. L: let h = stored hashed password for uid;

let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Salt

• Salt confidentiality:
– Can be as public as username, though typically users

don’t see it
– Does not need to be secret, whereas password must

be

• Salt needs to be unique even across systems;
easiest way to achieve is to choose randomly

• Length of salt should be related to strength of
cryptography employed in rest of system

Salt

To combine with iterated hashing, include salt in first hash:

z1 = H(p, s);
z2 = H(p, z1);
...
...
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

this idea used in widely-deployed algorithm for deriving
encryption keys from passwords... (next time)

Upcoming events

• [Wed] A3 due
• See today’s exercises for a way to win a free

coffee

Treat your password like your toothbrush. Don't let
anybody else use it. – Clifford Stoll

SLOWING DOWN HASHES WITH
SPACE

(we didn’t get to this in lecture)

Costly hashes

• Time is no longer the limiting factor
– Custom ASICs
– GPUs
– Parallelize across the hardware

• Relevant to cryptocurrencies

Costly hashes

• Space is another scarce resource
– Idea: provide configurable tradeoff of time vs. space

required to compute hash
– Technique: large number of computationally-expensive-

to-produce random elements accessed in random order
• user computing a single hash is okay with spending a lot of time

and little space
• attacker computing billions of hashes to construct dictionary

wants to minimize time but would need large space for every
hash, hence hard to parallelize

• New algorithms: scrypt (2009), Argon2 (2015)

