CS 5430

Key Establishment

Prof. Clarkson Spring 2017

Review

- Secure channel:
 - Bidirectional, multi-message conversations
 - Confidentiality goal: The channel does not reveal anything about messages except for their timing and size
 - Integrity goal: If Alice sends a sequence of messages m1, m2, ... then Bob receives a subsequence of that, and furthermore Bob knows which subsequence; and the same for Bob sending to Alice
- Cryptography employed:
 - Authenticated encryption to protect confidentiality and integrity
 - Message numbers to further protect integrity
 - Key derivation function to create many shared keys out of one session key
- Still need to share the session key!

Session key generation

Back to this assumption:

For now, let's assume Alice and Bob already have a single shared session key k

We need a means for Alice and Bob to generate that key...

Theorem [Boyd 1993]: impossible to establish secure channel between principals who do not already...

- share a key with each other, or
- separately share a key with a trusted third party, or
- have the means to ascertain a public key for each other

...i.e., you can't get something for nothing

channel bet

- share a ke
- separatel
- have the other

eady...

I party, or for each

for nothing

- Terminology:
 - user is a principal who will use the generated session key for further communication
 - other principals might be involved but won't learn or use the key
- Key transport protocol: session key is generated by one principal then transferred to all users
- Key agreement protocol: session key is generated as a function of inputs from all users and transferred to all users

KEY ESTABLISHMENT WITH TTP

Let's build something "really simple"...

- a key transport protocol
- with a trusted server
- who picks the session key

Transport protocol

- Assume: trusted server S with whom A and B already share a long-term key
 - A shares kAS with S
 - B shares kBS with S
- Output: new session key kAB shared by A and B
 - S trusted to generate key (correctly, randomly)
 - S ought to immediately forget kAB
- Security goals:
 - 1. only A and B (and S) know that key (confidentiality)
 - 2. (more to come...)

ATTEMPT #1

Naïve protocol

```
1. A -> S: A, B
2. S -> A: kAB
3. A \rightarrow B: A, kAB
      1. A, B
                   2. kAB
                   3. A, kAB
```

Naïve protocol

Can attacker violate conf. goal and learn kAB?

Eavesdropping attack

Can attacker violate conf. goal and learn kAB? Yes!

ATTEMPT #2

Countermeasure: Encryption

Key seems confidential... but do A and B understand its purpose?

Man in the middle attack

Countermeasure: Non-malleable encryption

 Non-malleable: Adversary cannot undetectably transform a ciphertext into a related ciphertext

 Degree of integrity is somewhere in-between plain-old encryption and authenticated

encryption

Countermeasure: Non-malleable encryption

- In the rest of this lecture, assume Enc is nonmalleable
 - For symmetric schemes, the usual way to get nonmalleability is with MACs, i.e., authenticated encryption
 - For asymmetric schemes, other methods possible that don't require digital signatures
 - RSA with OAEP
 - Cramer-Shoup extension of Elgamal

Another MITM attack

Key seems confidential... but do A and B understand its purpose? No!

Goal: 2. Users associate correct key with correct principal identities

ATTEMPT #3

Countermeasure: Names

1st MITM attack blunted

M can't change name in message 3
So B correctly believes key is shared with A

Replay attack

Goal: 3. the session key is *fresh* (integrity)

Secrets do leak

- "Truth will out" -Shakespeare, Merchant of Venice
- "For nothing is hidden that will not be disclosed, nor is anything secret that will not become known and come to light." -Luke 8:17
- Goal 4: protect new messages from disclosure if old session key does become known to adversary (conf.)
 - Old messages will be disclosed
 - New messages need not be
- Is it likely that adversary learns session key kAB but not any long-term shared keys?
 - Session keys typically stored only in memory
 - Long-term keys might be stored elsewhere

Implementing key erasure

- Never assume that deallocation or garbage collector will make keys inaccessible
- Zero out arrays containing keys, passwords, other secrets; if you can!
 - High-level languages make it quite hard
 - Compilers might optimize away
 - Registers and memory can end up in swap files on disk
 - DRAM can be cooled, physically extracted, and read

Countermeasure: Challenge-Response

- (back to that replay attack with old keys)
- Challenger issues question
- Responder gives answer
- Example: From Russia with Love
 - Unfortunately, that static challenge can be replayed
- So crypto protocols use nonces
 - Principals contribute their own unique nonce to be convinced of *freshness*

ATTEMPT #4

Countermeasure: Nonces

Convinces A that key is fresh, but not B...

Needham & Schroeder 1978

Replay attack

Assume:

- M captures message 3, and
- M learns kAB

FINAL ATTEMPTS

Bauer et al. 1983

Solution 1: submit nonces from both users to S

Denning & Saco 1981

Solution 2: use synchronized clocks and timestamps as nonce

tS is time at server S. A and B reject any message that is too old.

Wrapup: Secure channel

- Used authenticated encryption, message numbers, key derivation function, key establishment protocol
- Now we can have secure conversations!

Lessons learned

- Designing simple cryptographic protocol is hard
 - Attacks aren't obvious
 - Published protocols later found to be flawed
- Goals aren't immediately obvious
 - We ended up with four
 - There are many more contemplated in literature

KEY ESTABLISHMENT WITH PUBLIC KEYS

Needham & Schroeder 1978

Assume: A and B already have key pairs (KA,kA), (KB,kB), And public keys are already known to both

From nA and nB derive a key, e.g., H (nA, nB)

^{*} Still need non-malleable encryption not plain-old encryption

MITM attack

MITM attack

M just impersonated A!

Countermeasure: Names

Attack and fix published in [Lowe 1996]
Fixed protocol known as Needham-Schroeder-Lowe

MITM attack blunted

KEY ESTABLISHMENT FROM NOTHING

Diffie-Hellman(-Merkle)

- Key agreement protocol [1976]
 - Basis of many later protocols
 - Still available in SSL
 - No free lunch: establishes key but without any authentication of principals
 - Like having a secure telephone line to an unknown person
- Metaphor based on colors:

https://www.youtube.com/watch?v=YEBfamv-_do&feature=youtu.be&t=138

Whitfield Diffie and Martin Hellman

2015 Turing Award Winners

b. 1944 b. 1945

For critical contributions to modern cryptography.

The ability for two parties to communicate privately over a secure channel is fundamental for billions of people around the world. On a daily basis, individuals establish secure online connections with banks, e-commerce sites, email servers and the cloud. Diffie and Hellman's groundbreaking 1976 paper, "New Directions in Cryptography," introduced the ideas of public-key cryptography and digital signatures, which are the foundation for most regularly-used security protocols on the Internet today.

Upcoming events

• [today] A2 due, A3 out

You can't always get what you want.

But...sometimes you get what you need.

-The Rolling Stones