
CS 5430

Secure Channel

Prof. Clarkson
Spring 2017

Review: Encryption, MACs

• We can protect confidentiality or integrity of a
message against Dolev-Yao attacker

• Today:
– What if we want to protect confidentiality and

integrity?
– What if we want to have a conversation not just a

single message...?

CONFIDENTIALITY & INTEGRITY

Authenticated encryption

• Newer block cipher modes designed to provide
confidentiality and integrity
– OCB: Offset Codebook Mode
– CCM: Counter with CBC-MAC Mode
– GCM: Galois Counter Mode

• Or, you could combine encryption schemes with
MAC schemes...

Encrypt and MAC

0. k_E = Gen_E(len)
k_M = Gen_M(len)

1. A: c = Enc(m; k_E)
t = MAC(m; k_M)

2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'

then output m'
else abort

m

c t

Encrypt and MAC

• Pro: can compute Enc and MAC in parallel
• Con: MAC must protect confidentiality

(not actually a requirement we ever stipulated)

• Example: ssh (Secure Shell) protocol
– recommends AES-128-CBC for encryption
– recommends HMAC with SHA-2 for MAC

Aside: Key reuse

• Never use same key for both encryption and
MAC schemes

• Principle: every key in system should have
unique purpose

Encrypt then MAC

1. A: c = Enc(m; k_E)
t = MAC(c; k_M)

2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t

Encrypt then MAC

• Pro: provably most secure of three options
[Bellare & Namprepre 2001]

• Pro: don't have to decrypt if MAC fails
– resist DoS

• Example: IPsec (Internet Protocol Security)
– recommends AES-CBC for encryption and HMAC-

SHA1 for MAC, among others
– or AES-GCM

MAC then encrypt

1. A: t = MAC(m; k_M)
c = Enc(m,t; k_E)

2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M)
then output m'
else abort

m

c

MAC then encrypt

• Pro: provably next most secure
– and just as secure as Encrypt-then-MAC for strong

enough MAC schemes
– HMAC and CBC-MAC are strong enough

• Example: SSL (Secure Sockets Layer)
– Many options for encryption, e.g. AES-128-CBC
– For MAC, standard is HMAC with many options for

hash, e.g. SHA-256

Authenticated encryption

• Three combinations:
– Enc and MAC
– Enc then MAC
– MAC then Enc

• Let's unify all with a pair of algorithms:
– AuthEnc(m; ke; km): produce an authenticated

ciphertext x of message m under encryption key ke and
MAC key km

– AuthDec(x; ke; km): recover the plaintext message m
from authenticated ciphertext x, and verify that the MAC
is valid, using ke and km
• Abort if MAC is invalid

CONVERSATIONS

Protection of conversation

• Threat: attacker who controls the network
– Dolev-Yao model: attacker can read, modify, delete

messages

• Harm: conversation can be learned (violating
confidentiality) or changed (violating integrity) by
attacker

• Vulnerability: communication channel between
sender and receiver can be controlled by other
principals

• Countermeasure: all the crypto we’ve seen so far…

Secure channel

Channel:
• Bidirectional communication between two principals
• But their roles are not identical
– Client and server, initiator and responder, etc.
– We'll call them Alice and Bob
– Same two principals might well have two parallel

conversations in which they play different roles

• Communication might be...
– spatial: over network
– temporal: over storage

• "Conversation with yourself"

Secure channel

Secure:
• The channel does not reveal anything about

messages except for their timing and size
(Confidentiality)

• If Alice sends a sequence of messages m1, m2, ...
then Bob receives a subsequence of that, and
furthermore Bob knows which subsequence
(Integrity)
– And the same for Bob sending to Alice

Secure channel

Implications of security goals...
• No guarantee that any messages are ever received

(subsequence could be empty) (no Availability goal)
• No attempt at anonymity
• No attempt to defend against traffic analysis
• Received messages:
– are in order (or at least orderable)
– are not modified
– are attributable to the other principal

Secure channel

Pieces of the puzzle:
• Use authenticated encryption to protect

confidentiality and integrity
– Block cipher + mode
– MAC

• Use message numbers to further protect
integrity

• Use a key establishment protocol and key
derivation function to create shared session keys

Secure channel

Pieces of the puzzle:
• Use authenticated encryption to protect

confidentiality and integrity
– Block cipher + mode
– MAC

• Use message numbers to further protect
integrity

• Use a key establishment protocol and key
derivation function to create shared session keys

Message numbers

• Aka sequence numbers
• Every message that Alice sends is numbered
– 1, 2, 3, ...
– numbers increase monotonically
– never reuse a number

• Bob keeps state to remember last message number he
received

• Bob accepts only increasing message numbers
• And ditto all the above, for Bob sending to Alice
– so each principal keeps two independent counters: messages

sent, messages received

Message numbers

What if Bob detects a gap? e.g. 1, 2, 5
• Maybe Mallory deleted messages 3 and 4 from network
• Maybe Mallory detectably changed 3 and 4, causing Bob to

discard them
• In either case, channel is under active attack

– Absent availability goals, time to PANIC: abort protocol, produce
appropriate information for later auditing, shut down channel

What if network non-maliciously dropped messages or will deliver
them later?
• Let's assume underlying transport protocol guarantees that

won't happen (e.g. TCP)

Message numbers

• Message number usually implemented as a fixed-
size unsigned integer, e.g., 32 or 48 or 64 bits

• What if that int overflows and wraps back
around to 0?
– Message number must be unique within

conversation to prevent Mallory from replaying old
conversation

– So conversation must stop at that point
– Can start a new conversation with a new session key

Secure channel

Pieces of the puzzle:
• Use authenticated encryption to protect

confidentiality and integrity
– Block cipher + mode
– MAC

• Use message numbers to further protect
integrity

• Use a key establishment protocol and key
derivation function to create shared session keys

Session keys

• For now, let's assume Alice and Bob already have a single
shared session key k
– Recall: session key is used for limited time then discarded
– Here, the session duration is a single conversation

• But a single key isn't good enough...
– Need a key for the block cipher
– Need a key for the MAC

• And recall:
– Principle: every key in system should have unique purpose
– Implies: should not use same key for both Enc and MAC algorithms
– Also implies: should not use same keys for

• Alice -> Bob, vs.
• Bob -> Alice

Key derivation

• Have one key: k
• Need four keys:

1. kea: Encrypt Alice to Bob
2. keb: Encrypt Bob to Alice
3. kma: MAC Alice to Bob
4. kmb: MAC Bob to Alice

• How to get four out of one: use a cryptographic hash
function H to derive keys...
1. kea = H(k, "Enc Alice to Bob")
2. keb = H(k, "Enc Bob to Alice")
3. kma = H(k, "MAC Alice to Bob")
4. kmb = H(k, "MAC Bob to Alice")

Key derivation
• Why hash?

– Destroys any structure in input
– Produces a fixed-size output that can be truncated, as necessary, to

produce key for underlying algorithm
– Unlikely to ever cause any of four keys to collide
– Even if one of four keys ever leaks, hard to invert hash to recover k and

learn the other keys
• Small problem: maybe the output of H isn't compatible with the

output of Gen
– For most block ciphers and MACs, not a problem

• they happily take any uniformly random sequence of bits of the right length as keys
– For DES, it is a problem

• has weak keys that Gen should reject
– For many asymmetric algorithms, it would be a problem

• keys have to satisfy certain algebraic properties

Secure channel

Pieces of the puzzle:
• Use authenticated encryption to protect

confidentiality and integrity
– Block cipher + mode
– MAC

• Use message numbers to further protect
integrity

• Use a key establishment protocol and key
derivation function to create shared session keys

To send a message from A to B

1. A:
increment sent_ctr;
if sent_ctr overflows then abort;
x = AuthEnc(sent_ctr, m; kea; kma)

2. A -> B: x
3. B:

i,m = AuthDec(x; kea; kma);
increment rcvd_ctr;
if i != rcvd_ctr then abort;
output m

To send a message from B to A

1. B:
increment sent_ctr;
if sent_ctr overflows then abort;
x = AuthEnc(sent_ctr, m; keb; kmb)

2. B -> A: x
3. A:

i,m = AuthDec(x; keb; kmb);
increment rcvd_ctr;
if i != rcvd_ctr then abort;
output m

Secure channel

Pieces of the puzzle:
• Use authenticated encryption to protect

confidentiality and integrity
– Block cipher + mode
– MAC

• Use message numbers to further protect
integrity

• Use a key establishment protocol and key
derivation function to create shared session keys

Session key generation

Back to this assumption:
For now, let's assume Alice and Bob already have a
single shared session key k

We need a means for Alice and Bob to generate
that key...

To be continued!

Upcoming events

• [Wed] A2 due, A3 out

Most conversations are simply monologues
delivered in the presence of a witness. – Margaret

Millar

