
CS 5430

Block Cipher Modes and
Asymmetric-key Encryption

Prof. Clarkson
Spring 2017



Review: block ciphers

• Encryption schemes:
– Enc(m; k):  encrypt message m under key k
– Dec(c; k):  decrypt ciphertext c with key k
– Gen(len):  generate a key of length len

• Defined for a particular block length
– DES:  64 bit blocks
– AES:  128 bit blocks
– Messages must have exactly that length 

• Every pair of principals must share a key
– O(n^2) key distribution problem



BLOCK CIPHER MODES



The obvious idea...

• Divide long message into short chunks, each the 
size of a block

• Encrypt each block with the block cipher

m



The obvious idea...

• Divide long message into short chunks, each the 
size of a block

• Encrypt each block with the block cipher

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5

Enc( . ; k)



...is a bad idea

Enc-ECB(Tux; k)

Called electronic code book 
(ECB) mode



Good modes

• Cipher Block Chaining (CBC) mode
– idea:  XOR previous ciphertext block into current 

plaintext block
• Counter (CTR) mode
– idea:  derive one-time pad from increasing counter

• (and others)
• With both:
– every ciphertext block depends in some way upon 

previous plaintext or ciphertext blocks
– so even if plaintext blocks repeat, ciphertext blocks don't
– so intra-message repetition doesn't disclose information



Good modes

Enc(Tux; k)

but what if you encrypt Tux twice under the same key?



Good modes

• Problem:  block ciphers are deterministic:  inter-
message repetition is visible to attacker

• Both CBC and CTR modes require an additional 
parameter:  a nonce
– Enc(m; nonce; k)
– Dec(c; nonce; k)
– CBC calls the nonce an initialization vector (IV)

• Different nonces make each encryption different 
than others
– Hence inter-message repetition doesn't disclose 

information



Nonces

A nonce is a number used once

Must be
• unique:  never used before in lifetime of system
and/or (depending on intended usage)
• unpredictable:  attacker can't guess next nonce given all 

previous nonces in lifetime of system



Nonce sources
• counter

– requires state
– easy to implement
– can overflow
– highly predictable

• clock:  just a counter
• random number generator

– might not be unique, unless drawn from large 
space

– might or might not be unpredictable
– generating randomness:

• standard library generators often are not 
cryptographically strong, i.e., unpredictable by 
attackers

• cryptographically strong randomness is a black art



Random comics



What if the message length isn't exactly a multiple of block 
length?  End up with final block that isn't full:

Non-solution:  pad out final block with 0's (not reversible)

Solution:  Let B be the number of bytes that need to be 
added to final plaintext block to reach block length.  Pad 
with B copies of the byte representing B. Called PKCS #5 or 
#7 padding.

Padding

m



Block modes

Now we know how to encrypt messages of 
arbitrary length!

But we still have the quadratic key distribution 
problem...



ASYMMETRIC-KEY ENCRYPTION



Key pairs

• Instead of sharing a key between pairs of 
principals...

• ...every principal has a pair of keys
– public key: published for the world to see
– private key: kept secret and never shared



Key pairs

Terminology breakdown!
• private keys aren't necessarily personally-

identifying
• symmetric-key crypto sometimes called "secret 

key" even though private keys also kept secret



Protocol to exchange encrypted message

1. A:  c = Enc(m; K_B)
2. A -> B:  c
3. B:  m = Dec(c; k_B)

key pair:  (K_B, k_B)
• public key written with uppercase letter
• private key written with lowercase letter



Public keys

0. B:  (K_B, k_B) = Gen(len)
1. ...

• All public keys published in "phonebook"
• So A can lookup B's key to send message
• Length of phonebook is O(n)
• So quadratic problem reduced to linear!



RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002:  ingenious 
contribution to making public-key cryptography 
useful in practice



RSA modulus

• Encryption and decryption are big integer operations 
modulo a large number called the modulus
– Size of modulus bounds the size of keys and messages
– Common modulus sizes: 1024, 2048, … bits

• Modulus is itself a product of two large primes
– One way to break RSA would be to efficiently factor such 

numbers
– Largest challenge broken so far is 768-bit modulus [2010]
– Shor's algorithm factors in polynomial time on a quantum 

computer
• largest factorization so far is of the number 56153 (i.e., 16 bits)
• motivates work on post-quantum cryptography



Textbook RSA is insecure

• Deterministic:  given same plaintext and key, always 
produces the same ciphertext

• Several other attacks, too [Katz & Lindell 2008, 
section 10.4.2]

• Solution:  incorporate a nonce in the message before 
encrypting
– Called padding but encoding might be a better term
– Don’t implement yourself; use OAEP implementation in 

your crypto library (Optimal Asymmetric Encryption 
Padding)



Elgamal

Taher Elgamal [1985]



Elgamal

• Like RSA:
– Big integer operations modulo a large number
– Common modulus (group) sizes: 1024, 2048, … bits

• Unlike RSA:
– Key size can be much smaller than group size, which can 

speed up some operations
– Elgamal encryption is probabilistic:

• Given same plaintext and key, different calls to Enc produce different 
ciphertexts with high probability

• Choice of a nonce is built-in to algorithm instead of part of padding
– Factoring isn’t relevant

• One way to break Elgamal is by taking discrete logarithms



Key lengths

Again, various recommendations for strength 
summarized at https://www.keylength.com/en/



Problems of length

• Asymmetric encryption uses big integers, not byte arrays
– all messages must be encoded as integers
– modulus dictates maximum integer that can be encrypted
– big integer operations are slow

• say, 1 to 3 orders of magnitude slower than block ciphers

• So the problems we had before crop up again...
– what if message length is too short?

• actually that's okay:  a small integer is still an integer

– what if message length is too long?
• in theory could use block modes like with symmetric encryption
• in practice, that's too inefficient...



HYBRID ENCRYPTION



Hybrid encryption

• Assume:
– Symmetric encryption scheme (Gen_S, Enc_S, Dec_S)
– Asymmetric encryption scheme (Gen_A, Enc_A, Dec_A)

• Use asymmetric encryption to establish a shared 
session key
– Avoids quadratic problem, assuming existence of 

phonebook
– Session key will be short, so avoids inefficiency

• Use symmetric encryption to exchange long 
plaintext encrypted under session key
– Gain efficiency of block cipher and mode



Protocol to exchange encrypted message

0.  B: (K_B, k_B) = Gen_A(len_A)
1.  A: k_s = Gen_S(len_S)

c1 = Enc_A(k_s; K_B)
c2 = Enc_S(m; k_s) //mode

2.  A -> B: c1, c2
3.  B: k_s = Dec_A(c1; k_B)

m = Dec_S(c2; k_s)



Session keys

• If key compromised, only those messages 
encrypted under it are disclosed

• Used for a brief period then discarded
– cryptoperiod:  length of time for which key is valid
– in this case, for a single (long) message
– not intended for reuse in future messages
– only intended for unidirectional usage:  
• A->B, not B->A
• why?  A chose the key, not B



Encryption

• We can now protect confidentiality of messages 
against Dolev-Yao attacker 
– efficiently, thanks to hybrid of symmetric and 

asymmetric encryption
– assuming existence of phonebook of public keys

• But what about integrity...?



Upcoming events

• [today] A1 due, A2 out
• [Mon] Feb Break

Few false ideas have more firmly gripped the minds 
of so many intelligent men than the one that, if 

they just tried, they could invent a cipher that no 
one could break.  – David Kahn


