
CS 5430

Assurance

Prof. Clarkson
Spring 2017

Review

• Aspects of security: confidentiality, integrity,
availability

• Concepts: Harm, threat, vulnerability, attack,
countermeasure

• Principles: Accountability, least privilege, defense in
depth, open design, ...

• Goals and Requirements: What system should not
and should do for security

Today: assurance and evaluation

Assurance

• How do you convince yourself that system is secure?
• How do you convince others??
• Assurance is evidence that system will not fail in particular

ways
– Development process (e.g. formal methods, deliberate fault

injection and discovery)
– Skill of developers
– Experience with deployed system

• Evaluation is process of establishing assurance
– developers
– QA teams
– third party labs

Economics is against us

• Companies race to ship innovative product
sooner than competitors
– Little security
– Wrong security

• Later security is “bolted on” as additional
features
– But incentive is to lock in customers
– Product is already deployed; too late for major design

changes that might be necessary

Build security in

• Integrate security functionality from the beginning
of development
– During requirements engineering
– During system design
– During testing

• Accumulate evidence of security as development
proceeds
– Documentation
– Analysis: by humans, by machines
– Test suites

EVALUATION

Orange Book evaluation

Orange Book evaluation

• Used approx. 1985-2000 for US government systems
• http://csrc.nist.gov/publications/history/dod85.pdf
• Evaluation classes (selected traits):
– D: meets no higher requirements
– C1: DAC & authentication (but maybe not at the level of

individual users), TCB with integrity verification, security
testing, documentation of security
features/testing/design

– C2: improved DAC (at the level of single users, failsafe
defaults, limits on propagation), audit (of specified
security relevant events and details of those events)
• IBM mainframes and Windows NT got this certification

Orange Book evaluation

• Evaluation classes, continued:
– B1: informal security policies, mandatory access

control (multilevel security)
– B2: formal security policies, clearly defined TCB,

covert channel analysis
– B3: minimal TCB with complete mediation,

automated intrusion detection
– A1: formal verification of design
• only a handful of systems ever achieved this level

Legacy of Orange Book

• Evaluation didn't succeed in commercial market
– Too costly; costs diverted to government and customers
– Too long to get evaluated (>1 year) compared to short

product cycles
• Raised awareness of security for vendors and government
– Major operating systems did incorporate discretionary access

control; would that have happened without evaluation?
– But few systems ever incorporated the multilevel security the

US DoD wanted
• Unpopular security features mandated by higher levels
– Research still ongoing on how to make such features usable

• Led to international standards for evaluation...

Common Criteria (CC)

• Evolved in the 1990s out of criteria in Europe,
Canada, and US

• Different evaluation model:
– Define protection profile and security target

• think of these as customized security goals/requirements
• e.g., for OS, for smartphone, for VPN client
• not one-size-fits-all like Orange Book

– Increasingly strict evaluation criteria for how well system
meets profile/target

• Evaluation done by independent labs

Protection profile (PP)

• Written for a category of products or systems that meet
specific consumer needs

• Implementation independent
• Security environment:
– assumptions about intended usage
– threats of concern

• Security goals and requirements [using our terminology]
– Hundreds of pages of pre-written proto-requirements:

http://www.commoncriteriaportal.org/files/ccfiles/CCPART2
V3.1R2.pdf

• PP itself can be evaluated (complete, consistent,
technically sound)

Security target (ST)

• Can be based on multiple protection profiles, or
created from scratch

• Customized to a specific Target of Evaluation
(TOE), i.e., product or system

• Argues (provides evidence) how the system
meets the security goals and requirements
– Assurance argument

Evaluation Assurance Level (EAL)

• EAL1: Functionally Tested
– Analysis of specifications, documentation; independent

testing
– Some confidence desired but threat is not serious

• EAL2: Structurally Tested
– Analysis also of high-level design, of developer's testing;

vulnerability analysis
– Low level of assurance, perhaps for legacy systems

• EAL3: Methodically Tested and Checked
– Also requires use of development environment controls

and configuration management

Evaluation Assurance Level (EAL)

• EAL4: Methodically Designed, Tested, and Reviewed
– Also analyze low-level design, some of the implementation;

developers must provide informal model of product or security
policy

– Moderate level of assurance, probably highest likely to achieve for
pre-existing systems

– Common level for commercial OS
• EAL5 through EAL 7

– Increasing demands for formal verification, penetration testing,
independent testing

• Higher EAL does not mean more secure—rather, means
assurance in claimed security is based on stronger evidence

Legacy of Common Criteria

• “When presented with a security product, you
must always consider whether the salesman is
lying or mistaken.” – Ross Anderson

• Is the PP really what you want?
• Is the evaluation facility trustworthy?
– Paid by developer
– Controlled by governments

• What vulnerabilities have been discovered after
evaluation?

Evaluation Assurance Level (EAL)

Source: US government report GAO-06-392, 2006

VERIFICATION AND TESTING

Approaches to reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– Static analysis

(“lint” tools, FindBugs, …)
– Fuzzers

• Mathematical
– Sound type systems
– Formal verification

More formal: eliminate
with certainty as many problems
as possible.

Less formal: Techniques may
miss problems in programs

All of these methods should be used!

Even the most formal can still
have holes:
• did you prove the right thing?
• do your assumptions match reality?

Testing vs. Verification

Testing:
• Cost effective
• Guarantee that program is correct on tested inputs

and in tested environments

Verification:
• Expensive
• Guarantee that program is correct on all inputs and

in all environments

Edsger W. Dijkstra

(1930-2002)

Turing	Award	Winner	(1972)

For	eloquent	insistence	and	practical	
demonstration	that	programs	should	be	
composed	correctly,	not	just	debugged	into	
correctness

"Program	testing	can	at	best	show	the	
presence	of	errors	but	never	their	absence."

Verification

Formal verification: prove system correct w.r.t.
mathematical models
• Typically done for small and/or safety-critical

systems
• In the 1970s, scaled to about tens of LOC
• Now, research projects scale to real software:
– CompCert: verified C compiler
– seL4: verified microkernel OS
– Ynot: verified DBMS, web services

Verification

Lightweight kinds of verification:
• Type systems
– Guarantee certain misbehaviors won't occur
– Good tradeoff of usability vs. guarantees

• Researchers continue working to find other sweet spots
• For lightweight security verification?
– FindBugs: project from UMD, used by Google, Oracle, Wells

Fargo, Bank of America, etc.
– Eclipse plugin and standalone tool
– A subset of Fortify SCA tool
– What does it do...?

Bugs

"bug": suggests something just wandered in

[IEEE 729]
• Fault: result of human error in software system

– E.g., implementation doesn't match design, or design doesn't match
requirements

– Might never appear to end user

• Failure: violation of requirement
– Something goes wrong for end user

Human error Fault Failure

FindBugs

• Looks for patterns in code that are likely faults
and that are likely to cause failures

• Categorizes and prioritizes bugs for presentation
to developer
– Sample output on JDK 7 source

• Watch video of Prof. Bill Pugh, developer of
FindBugs, present it to a Google audience:
https://www.youtube.com/watch?v=8eZ8YWVl-2s

Testing

• Goal is to expose existence of faults, so that they
can be fixed

• Unit testing: isolated components
• Integration testing: combined components

• System testing: functionality, performance,
acceptance

Testing

When do you stop testing?
• Bad answer: when time is up
• Bad answer: what all tests pass
• Fun fact: Pr[undetected faults] increases with # detected

faults [Myers 1979, 2004]
• Better answer: when methodology is complete (code

coverage, paths, boundary cases, etc.)
• Future answer: statistical estimation says Pr[undetected

faults] is low enough (active research)

Testing for security?

Penetration testing

• Experts attempt to attack
– Internal vs. external
– Overt vs. covert

• Typical vulnerabilities exploited:
– Passwords (cracking)
– Buffer overflows
– Bad input validation
– Race conditions / TOCTOU
– Filesystem misconfiguration
– Kernel flaws

Fuzz testing

[Barton Miller, 1989, 2000, 2006]
• "It was a dark and stormy night..."
• Generate random inputs and feed them to programs:
– Crash? hang? terminate normally?
– Of ~90 utilities in '89, crashed about 25-33% in various Unixes
– Crash implies buffer overflow potential

• Since then, "fuzzing" has become a standard practice for
security testing

• Results have been repeated for X-windows system,
Windows NT, Mac OS X
– Results keep getting worse in GUIs but better on command

line

Fuzz testing

Testing strategy:
• Purely random no longer so good, just gets low-

hanging fruit
• Better:
– Use grammar to generate inputs
– Or randomly mutate good inputs in small ways
• especially for testing of network protocols

– Research: use analysis of source code to guide
mutation of inputs

Upcoming events

• [today] Add deadline
• [next Wed] A1 due

One unerring mark of the love of truth is not
entertaining any proposition with greater

assurance than the proofs it is built upon will
warrant.

– John Locke

