
Part IV
Access Control

Confidentiality and integrity are often enforced using a form of authorization
known as access control.

• Predefined operations are assumed to be the sole means by which princi-
pals can learn or update information.

• A reference monitor is consulted whenever one of these predefined oper-
ations is invoked; the operation is allowed to proceed only if the invoker
holds the required privileges.

Confidentiality is achieved by restricting whether a given principal is authorized
to execute operations that reveal information; integrity is achieved analogously
by restricting the execution of operations that perform updates.

An access control policy specifies whether a subject may perform operations
associated with a given object, including operations to change the policy. Sub-
jects are entities to which execution can be attributed—users, processes, threads,
or even procedure activations. And objects are entities on which operations are
defined—storage abstractions, such as memory or files (with read, write, and
execute operations), and code abstractions, such as modules or services (with
operations to initiate or suspend execution). Distinct operations typically are
associated with distinct privileges. So, for example, there would be a specific
read privilege for each object O, and only a subject S that holds this privilige
would be permitted to read O.

The Principle of Least Privilege is best served by having fine-grained sub-
jects, objects, and operations; the Principle of Failsafe Defaults favors defining
an access control policy by enumerating privileges rather than prohibitions.
That, however, is only a small part of the picture, and there is much ground to
cover in our discussions.

95

Copyright 2011 Fred B. Schneider
All rights reserved.

Copyright 2011 Fred B. Schneider
All rights reserved.

Chapter 7

Discretionary Access
Control

7.1 The DAC Model

In a discretionary access control (DAC) policy, the initial assignment and sub-
sequent propagation of privileges associated with an object are controlled by
the owner of that object and/or other subjects whose authority can be traced
back to the owner. Simple DAC policies are often implemented for files by com-
mercial operating systems. The users are subjects; a user who creates a file is
the owner and specifies which other users are authorized to read, write, and/or
execute the file.

The assignment of privileges by a DAC policy can be depicted using a table
that has a row for each subject and a column for each object. The entry in the
cell associated with a subject S and an object O lists privileges corresponding
to those operations on O that are authorized when invoked by execution being
attributed to S . Figure 7.1, for example, gives a table that assigns privileges
for users fbs, mmb and jhk to perform operations on files c1.tex, c2.tex, and
invtry.xls. Only execution attributed to fbs can read (r) or write (w) c1.tex
and c2.tex; only execution attributed to mmb can write invtry.xls; execution
attributed to any of the three users can read invtry.xls.

object
subject c1.tex c2.tex invtry.xls
fbs r, w r, w r
mmb r, w
jhk r

Figure 7.1: Example DAC Policy

97

Copyright 2011 Fred B. Schneider
All rights reserved.

98 Chapter 7. Discretionary Access Control

The table that Figure 7.1 depicts is called an access control matrix.1 How-
ever, the term “matrix” here is misleading, because row and column ordering in
a matrix has significance but row and column ordering in Figure 7.1 does not.
We assume no ordering on the subjects or on the objects. So an access control
matrix just specifies an unordered set Auth of triples, where 〈S , O, op〉 ∈ Auth
holds if and only if subject S holds privilege op for object O; we will call Auth
an authorization relation.

Any DAC policy can easily be circumvented if subjects are permitted to make
arbitrary changes to Auth. Yet as execution of a system proceeds, changes to
Auth will invariably be needed. New objects must be accommodated, object
reuse requires changing the set of prinicpals that are authorized to access an
object, and trust relationships between principals evolve in response to events
outside of the computing system. To characterize permitted changes to Auth,
a DAC policy includes commands. Each command has a Boolean precondition
and an action that alters the set of triples in Auth. If the command is invoked
and the precondition holds, then the action is performed; if the precondition
does not hold, then the command fails. Evaluation of the precondition and
performing the action is assumed to be indivisible.2

As an example, here is a command that might be found on a system where
subjects are users.

addPriv(U,U ′, O, op): command
pre: invoker(U) ∧ 〈U,O, owner〉 ∈ Auth ∧ op 6= owner
action: Auth := Auth ∪ {〈U ′, O, op〉}

The precondition defined by addPriv is

invoker(U) ∧ 〈U,O, owner〉 ∈ Auth ∧ op 6= owner

where predicate invoker(U) is satisfied if and only if addPriv is invoked by
execution attributed to user U ; so the precondition implies that the invoker of
addPriv has the owner privilege for an object O and that op is not the owner
privilege. The action specified by addPriv is an assignment statement

Auth := Auth ∪ {〈U ′, O, op〉}

which adds to Auth a triple authorizing operation op on object O by user U ′.
So, the addPriv command is consistent with the defining characteristic for a
DAC policy—the owner of object O is the subject that grants privileges for
operations on O.

Separation of Privilege suggests that it is better to have a distinct privi-
lege3 say op∗ for granting a privilege op than to have a single generic privilege,
like owner, that empowers granting any privilege. So a better command than
addPriv would be:

1Some authors prefer the term a protection matrix.
2In practice, checking a precondition and executing the code for the action is likely to

involve multiple atomic actions. The effect must nevertheless somehow be made to appear
indivisible with respect to execution of other commands.

3Privilege op∗ is sometimes called a copy flag for op.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.1. The DAC Model 99

grantPriv(U,U ′, O, op): command
pre: invoker(U) ∧ 〈U,O, op∗〉 ∈ Auth
action: Auth := Auth ∪ {〈U ′, O, op〉}

7.1.1 Finer-Grained Subjects: Protection Domains

The Principle of Least Privilege suggests that the set of operations a principal
should be authorized to execute is not the same for all tasks. Users are thus too
coarse-grained to serve us well as the subjects in DAC policies. This leads to
employing protection domains as subjects. We associate a protection domain
with each thread of control, and we allow transitions from one protection domain
to another as execution of the thread proceeds. A user concurrently engaged
in multiple tasks, each as a separate thread, would cause execution in several
protection domains and, since different privileges are now being associated with
the execution required for the different tasks, the Principal of Least Privilege
can be instantiated with Auth.

For an efficient implementation, protection-domain transitions must be as-
sociated with events that a run-time environment can detect cheaply. Practical
considerations also limit what state or execution history would be available
for deciding which protection domain is being associated with some execution.
Protection-domain transitions that coincide with certain kinds of control trans-
fer (e.g., invoking a program) are typically inexpensive for a run-time environ-
ment to support, as are those that coincide with certain state changes (e.g.,
changing from user mode to system mode). But few processors, for example,
could efficiently support entry to a new protection domain that is triggered by
branching to a specific instruction or by storing to an arbitrary memory location.

When an operating system provides the support for protection domains,
certain system calls are identified with protection-domain transitions. System
calls for invoking a program or changing from user mode to system mode are
obvious candidates. Some operating systems provide an explicit domain-change
system call rather than implicitly linking protection-domain transitions to other
functionality; the application programmer or a compiler’s code generator is then
required to decide when to invoke this domain-change system call.

Since distinct tasks are typically implemented by distinct pieces of code, the
Principle of Least Privilege could be well served if we associate different protec-
tion domains with different code segments. We might, for example, contemplate
having a protection domain U/pgm for each code segment pgm executing on be-
half of a user U . Here, pgm could be an entire program, a method, a procedure,
or a block of statements; it might be executed by a process started by user U or
by a process started by some other user in response to a request from U . Ideally,
protection domain U/pgm would hold only the minimum privileges needed for
pgm to execute for U .

Figure 7.2 reformulates the access control matrix of Figure 7.1 in terms of
subjects that are protection domains associated with code segments correspond-
ing to entire programs: a shell (sh), a text editor (edit), and a spreadsheet
application (excel). Notice, c1.tex and c2.tex can be written by user fbs only

Copyright 2011 Fred B. Schneider
All rights reserved.

100 Chapter 7. Discretionary Access Control

object
domain c1.tex c2.tex invtry.xls
fbs/sh
fbs/edit r, w r, w
fbs/excel r
mmb/sh
mmb/edit
mmb/excel r, w
jhk/sh
jhk/edit
jhk/excel r

Figure 7.2: Example DAC Policy for Domains

while executing edit, and invtry.xls can be accessed only by executing excel
(with mmb still the only user who can perform write operations to that object).

A given protection domain might or might not be appropriate for execution
in support of a given task and, therefore, according to the Principle of Least
Privilege, transitions ought to be authorized only between certain pairs of pro-
tection domains. For example, we would expect that execution in a shell should
be allowed to start either a text editor or a spreadsheet application, but exe-
cution in a spreadsheet application should not be allowed to start a shell. We
specify such restrictions by defining an enter (e) privilege for each protection
domain and by including protection domains in the set of objects that can be
named by Auth. A protection domain D must possess the enter privilege for
a protection domain D ′—that is, 〈D , D ′, enter〉 ∈ Auth must hold—for exe-
cution in D ′ to be started by execution in D .4 Figure 7.3 incorporates such
constraints.

7.1.2 Amplification and Attenuation

We have so far not constrained how privileges change when a transition occurs
between protection domains. In practice, though, the set of privileges before
and after a transition are likely to be related.

Attenuation of Privilege. Suppose execution in a protection domain D
initiates a subtask, and that subtask is executed in protection domain D ′.
Then D ′, having a more circumscribed scope, should not have all of the
privileges D has. We use the term attenuation of privilege for a transition
into a protection domain that eliminates privileges.

4An alternative to having protection domains be objects is having code segments (inde-
pendent of user) be objects. With this alternative, protection domains from which a user U
is allowed to next start execution of code segment pgm are granted an execute privilege for
object pgm.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.1. The DAC Model 101

object

domain c
1
.t
e
x

c
2
.t
e
x

i
n
v
t
r
y
.x
l
s

f
b
s
/s
h

f
b
s
/e
d
i
t

f
b
s
/e
x
c
e
l

m
m
b
/s
h

m
m
b
/e
d
i
t

m
m
b
/e
x
c
e
l

j
h
k
/s
h

j
h
k
/e
d
i
t

j
h
k
/e
x
c
e
l

fbs/sh e e
fbs/edit r, w r, w
fbs/excel r
mmb/sh e e
mmb/edit
mmb/excel r, w
jhk/sh e e
jhk/edit
jhk/excel r

Figure 7.3: Example DAC Policy with Domain Entry

Amplification of Privilege. Suppose execution in a protection domain
D ′ implements an operation on some object O, as a service to execution
in protection domain D . Then D ′ should grant privileges for O that D
does not. We use the term amplification of privilege for a transition into
a protection domain that adds privileges.

Notice that attenuation of privilege and amplification of privilege both play a
role in supporting the Principle of Least Privilege. Moreover, amplification of
privilege also is key for supporting data abstraction, where users of an object
are deliberately kept ignorant of how that object is implemented.

The Confused Deputy. Amplification of privilege brings the risk of a con-
fused deputy attack. Here, one subject S requests execution by another subject
S ′ in a way that causes S′ to abuse privileges it holds but S′ does not hold.

Consider a server that processes client requests, where each request names
an input file and an output file. In processing a request, the server reads the
named input file, computes results, writes these results to the named output
file, and records billing information in file charges.txt. Further, suppose the
server holds a write privilege for charges.txt, and the server receives as part
of each request from a client C the read privilege C holds for the named input
file and write privilege C holds for the named output file.

We might expect that the processing of client requests cannot corrupt file
charges.txt, because clients lack write privileges for this file. But that expec-
tation is naive. A client naming charges.txt as the output file for a request
would cause the server to corrupt the billing information stored in charges.txt,
since the server does hold a write privilege for charges.txt (although this was

Copyright 2011 Fred B. Schneider
All rights reserved.

102 Chapter 7. Discretionary Access Control

not received from the client). What happened was the server functioned as a
deputy to the client, and the deputy became “confused” by the client’s request.

One obvious defense is for the server to validate each client request, by
checking that the client holds appropriate privileges for every file named in the
request. This defense, however, requires programmers to include checks in every
program that might invoke operations on objects provided by another. Many
programmers would regard adding those checks as onerous and not bother. So
the defense is unlikely to be deployed.

A more elegant defense is to combine naming and authorization. Instead of
names for objects (like files), programs use unforgeable bundles comprising the
name for an object along with privileges for that object. Bundles are assumed to
provide the sole means by which programs name, hence access, objects. In the
example above, each client request would convey two bundles—one for the input
file (incorporating a read privilege) and one for the output file (incorporating
a write privilege)—and the server would use these client-supplied bundles for
reading the input file and writing to the output file. The server would also have
a bundle for charges.txt (incorporating a write privilege). Since the client
does not have a write privilege for charges.txt, a client-supplied bundle for
charges.txt could not incorporate a write privilege—attempts by the server
to perform write operations to charges.txt using that client-supplied bundle
would fail. The confused deputy is no longer duped into writing the wrong
content into charges.txt.

7.1.3 *Undecidability of Privilege Propagation

A central concern when designing the commands for changing authorization
relation Auth is the assurance that certain priviliges cannot be granted to par-
ticular subjects. We formalize this concern using a predicate.

Privilige Propagation. CanGrant(S′, C,Auth, 〈S,O, op〉) is true if and
only if subject S eventually can be granted privilege op to object O by
starting from authorization relation Auth and allowing subjects not in S′

to execute commands from set C.

Typically, S′ would be the set of subjects that are both trusted and authorized
to grant 〈S,O, op〉, because finding that CanGrant(S′, C,Auth, 〈S,O, op〉) holds
then would indicate unauthorized propogation of privilege.

To determine whether CanGrant(S′, C,Auth, 〈S,O, op〉) holds we might write
a program that computes the value of CanGrant(S′, C,Auth, 〈S,O, op〉) by gen-
erating all authorization relations that subjects not in S′ executing sequences
of commands from C can derive from Auth. However, if commands create new
subjects or new objects then there might be an infinite number of infinite-length
command sequences to try. Termination is not guaranteed for a program un-
dertaking such an enumeration. So that approach is not guaranteed to work.

What about other approaches for evaluating CanGrant(S′, C,Auth, 〈S,O, op〉)?
We prove below that any program whose execution always terminates with the
value of CanGrant(S′, C,Auth, 〈S,O, op〉) could be used to solve the halting

Copyright 2011 Fred B. Schneider
All rights reserved.

7.1. The DAC Model 103

tape T � u v w x y z ␢ ␢ ␢ · · ·

6

mem : q
control unit

read/write head

T [0] T [pos]

Figure 7.4: A Turing Machine

problem for Turing machines. The latter is an undecidable problem and, there-
fore, so is the former. This means that there cannot exist a single program
that evaluates CanGrant(S′, C,Auth, 〈S,O, op〉) for any possible arguments S′,
C, Auth, and 〈S,O, op〉.

Turing Machines and Undecidability. A Turing machine is an abstract
computing device. It has an infinite tape, a read/write head, and a control unit
with a finite memory. Figure 7.4 depicts these components.

The tape comprises an infinite sequence T [0], T [1], ... of tape squares. Each
tape square is capable of storing some symbol from a finite set Γ ∪ {�, ␢}.
Symbol � is stored in T [0] to indicate that this is the first tape square; ␢ is
stored in any tape square that has never been written.

The read/write head is always positioned at some tape square T [pos], which
we refer to as the current tape square. The control unit uses the read/write
head to sense and/or change the symbol stored in the current tape square. In
addition, the control unit can reposition the read/write head, moving it one
tape square left or right.

The control unit has a memory mem capable of storing one symbol from
finite set Q of control states. We avoid confusion between tape and memory
symbols by assuming that Q and Γ ∪ {�, ␢} are disjoint. The control unit
performs execution steps, as specified by a transition function δ. By defining

δ(q, γ) = 〈q′, γ′, v〉

where v ∈ {−1, 1}, we specify that the following execution step occurs when
mem = q and T [pos] = γ:

T [pos] := γ′; mem := q′; pos := pos + v

That is, γ′ becomes the symbol stored by current tape square T [pos], q′ becomes
the new control state, and the read/write head position moves left (v = −1) or
moves right (v = 1).

We impose two requirements on what execution steps are possible by the
Turing machines we consider.

Copyright 2011 Fred B. Schneider
All rights reserved.

104 Chapter 7. Discretionary Access Control

• An execution step δ(q, γ) is defined for each possible symbol γ ∈ Γ∪{�, ␢}
and control state q ∈ Q − {qF }, where qF is called the halt state for the
Turing machine.

• When pos = 0 holds, no execution step replaces the � symbol found in
T [0] nor attempts to move the read/write head left (i.e., off the left end
of the tape).

A Turing machine is said to halt when no execution step is defined, so the first
of these requirements implies that execution of a Turing machine halts if and
only if qF is stored into the control state.

The full specification of transition function δ for a Turing machine would
specify the value of δ(q, γ) for each possible q ∈ Q− {qF } and γ ∈ Γ ∪ {�,␢}.
One way to represent this full specification is with a transtion table that has
|Q−{qF }| rows and |Γ∪{␢, ␢}| columns; the cell in the row for q and the column
for γ contains the value of δ(q, γ). This tablular representation has finite size
because Q and Γ are, by definition, finite sets. So, the transition table could be
stored in a finite number of tape squares on a Turing machine’s tape.

A Turing machine configuration is characterized by a triple 〈T, pos,mem〉,
where T is a tape, 0 ≤ pos, and mem ∈ Q. The configuration is considered initial
if pos = 0 and mem = q0 hold; it is considered terminal if mem = qF holds.
Execution steps of a Turing machine M induce a relation −→ on configurations;

〈T, pos,mem〉 −→ 〈T ′, pos ′,mem ′〉

holds if and only if an execution step starting from configuration 〈T, pos,mem〉
produces configuration 〈T ′, pos ′,mem ′〉.5 An execution in which M halts is
described by a finite sequence of configurations

〈T0, pos0,mem0〉 −→ 〈T1, pos1,mem1〉 −→ · · · −→ 〈Ti, posn,memn〉

where configuration 〈T0, pos0,mem0〉 is intial and configruation 〈Ti, posn,memn〉
is terminal. An execution that does not halt is described by an infinite sequence
of configurations

〈T0, pos0,mem0〉 −→ 〈T1, pos1,mem1〉 −→ · · · −→ 〈Ti, posi,memi〉 −→ · · ·

where configuration 〈T0, pos0,mem0〉 is initial and no subsequent configuration
is terminal.

Besides performing execution steps, Turing machines read input and produce
output. A finite-length input inp is conveyed by storing inp on the Turing ma-
chine’s tape prior to execution; the output of the execution is the tape’s contents
when (and if) execution of the Turing machine halts. We write M(inp) = out
to denote that execution of Turing machine M on input inp halts and produces
output out , and we write M(inp) = ↑ if M does not halt on input inp.

5Formally, 〈T, pos,mem〉 −→ 〈T ′, pos′,mem ′〉 holds if and only if δ(mem, T [pos]) =
〈mem ′, γ′, v〉, pos′ = pos + v, T ′[pos] = γ′, and T ′[i] = T [i] for all i where i 6= pos.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.1. The DAC Model 105

Halting Problem Undecidability. Because transition functions have finite-
length representations, the description for a Turing machine can itself be the
input to a Turing machine. So it is sensible to speak about a Turing machine
M that produces as its output the result of analyzing some Turing machine
M ′ whose specification is provided to M as an input. The halting problem is
concerned with constructing a Turing machine MHP that satisfies the following
specification.

MHP (M, inp) :
{

0 if M(inp) = ↑
1 if M(inp) 6= ↑ (7.1)

Thus, MHP (M, inp) = 1 if and only if Turing machine M halts on input inp.
A Turing machine MHP that satisfies specification (7.1) cannot exist. We

prove this by showing that the existence of MHP would lead to a contradiction.
Assume MHP exists. We use MHP to construct a Turing machine M that
satisfies the following specification:

M(inp) :
{

0 if MHP (M, inp) = 0
↑ if MHP (M, inp) = 1 (7.2)

That is, M invokes MHP and either (i) terminates with output a 0 or (ii) loops
forever. So there are two cases to consider.

• Case 1: M(inp) = 0. From (7.2), we conclude MHP (M, inp) = 0 holds.
According to specification (7.1) for MHP , this means that M(inp) does
not halt. But this leads to a contradiction, because we assumed for this
case that M(inp) = 0 which implies M(inp) does halt.

• Case 2: M(inp) = ↑. From (7.2), we conclude MHP (M, inp) = 1 holds.
According to specification (7.1) for MHP , this means that M(inp) halts.
But this leads to a contradiction, because we assumed for this case that
M(inp) does not halt.

Since both cases lead to contradictions, we conclude that the existence of MHP

leads to a contradiction—no Turing machine can solve the halting problem.

Privilige Propagation and Undecidability. We now establish that deter-
mining whether CanGrant(S′, C,Auth, 〈S,O, op〉) holds is an undecidable prob-
lem. We do this by showing that a program P can be used to solve the halting
problem if invoking P (C) can determine whether there exists a finite sequence
of commands from C that eventually causes 〈S,O, op〉 ∈ Auth to hold.

The heart of the proof is a construction for simulating any given Turing
machine M . We represent M ’s configuration by using an authorization relation
Auth where the set of objects equals the set of subjects. And we simulate M ’s
execution steps using a set C of commands, so that every execution of M is
simulated by a sequence of commands. Moreover, the commands are defined in
such a way that 〈S0, S0, qF 〉 ∈ Auth holds if and only if M halts. Consequently,
a program P that determines whether CanGrant(∅, C,Auth, 〈S0, S0, qF 〉) holds
would constitute a solution to the halting problem.

Copyright 2011 Fred B. Schneider
All rights reserved.

106 Chapter 7. Discretionary Access Control

object
subject S0 S1 S2 S3 S4 S5 S6

S0 � nxt
S1 u nxt
S2 v nxt
S3 w, q nxt
S4 x nxt
S5 y, nxt
S6 z, end

Figure 7.5: Representation of a Turing Machine Configuration by Auth

Figure 7.5 depicts one scheme that Auth could use to represent Turing ma-
chine configuration 〈T, 3, q〉 for a tape T storing: � u v w x y z ␢ ␢ ␢ The
representation is based on the following.

• 〈Si, Si, xi〉 ∈ Auth signifies that symbol xi ∈ Γ ∪ {�,␢} is stored by tape
square T [i].

• 〈Si, Si, q〉 ∈ Auth signifies that mem = q and pos = i hold, where q ∈ Q
and 0 ≤ i.

• The sequencing on tape squares is encoded with privileges: nxt, end, �.

– 〈S, S,�〉 ∈ Auth implies that subject S is used for representing T [0].

– 〈S, S, end〉 ∈ Auth implies subject S is used for representing the last
non-blank tape square of T .

– 〈S, S′,nxt〉 ∈ Auth implies that the tape square being represented us-
ing subject S′ immediately follows the tape square being represented
using subject S.

The need for 〈S, S′,nxt〉 privileges might at first seem puzzling. It arises because
tape squares for a Turing machine are ordered, we associate tape squares with
subjects, but the DAC model does not assume an ordering on subjects.6 By
introducing an ordering relation ≺ on the subjects, we induce an ordering on
tape squares. And we encode this ordering on subjects by representing S ≺ S′

using the privilege 〈S, S′,nxt〉 ∈ Auth.
The set of commands to simulate execution steps for a Turing machine are

derived from its transtion function δ. The precondition of each describes a
Turing machine configuration; the action updates Auth in accordance with the
changes to the configuration prescribed by δ. For example, the Turing machine
execution step specified by δ(q, γ) = 〈q′γ′, 1〉 is simulated by commands CR and
CR-end in Figure 7.6.

6You might expect the indices on subjects would suffice to define an ordering on subjects
But the ordering defined by having subject names differentiated only by integer subscripts is
illusory, being an artifact of notational convenience.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.1. The DAC Model 107

CR(s, s′): command
pre: 〈s, s, q〉 ∈ Auth ∧ 〈s, s, γ〉 ∈ Auth ∧ 〈s, s′,nxt〉 ∈ Auth
action: Auth := Auth − {〈s, s, q〉, 〈s, s, γ〉};

Auth := Auth ∪ {〈s, s, γ′〉, 〈s′, s′, q′〉};

CR-end(s): command
pre: 〈s, s, q〉 ∈ Auth ∧ 〈s, s, γ〉 ∈ Auth ∧ 〈s, s, end〉 ∈ Auth
action: Auth := Auth − {〈s, s, q〉, 〈s, s, γ〉, 〈s, s, end〉};

s′ := newSubject();
Auth := Auth ∪ {〈s, s, γ′〉, 〈s′, s′, q′〉, 〈s′, s′, end〉, 〈s, s′,nxt〉};

CL(s, s′): command
pre: 〈s′, s′, q〉 ∈ Auth ∧ 〈s′, s′, γ〉 ∈ Auth ∧ 〈s, s′,nxt〉 ∈ Auth
action: Auth := Auth − {〈s′, s′, q〉, 〈s′, s′, γ〉};

Auth := Auth ∪ {〈s′, s′, γ′〉, 〈s, s, q′〉};

CHALT(s): command
pre: 〈s, s, qF 〉 ∈ Auth
action: Auth := Auth − {〈s, s, qF 〉};

Auth := Auth ∪ {〈S0, S0, qF 〉

Figure 7.6: Commands to Simulate a Turning Machine

• CR handles the case where the read/write head position is not at the
right-most tape square; this case is distinguished because the current tape
square corresponds to some subject S for which there does exist another
subject S′ where 〈S, S′nxt〉 ∈ Auth holds.

• CR-end handles the case where the read/write head position is at the right-
most tape square; this case is distinquished by having the tape square
correspond to a subject S where 〈S, S, end〉 ∈ Auth holds.

And an execution step specified by δ(q, γ) = 〈q′γ′,−1〉 is simulated by CL in
Figure 7.6.

Finally, CHALT of Figure 7.6 is included in C so that 〈S0, S0, qF 〉 is granted
if ever privilege qF is granted to any subject. This command does not simulate
a Turing machine’s execution step, but now CanGrant(∅, C,Auth, 〈S0, S0, qF 〉)
holds if and only if the Turing machine being simulated halts. Thus, a pro-
gram that evaluates CanGrant(∅, C,Auth, 〈S0, S0, qF 〉) would constitute a solu-
tion to the halting problem. The halting problem is undecidable, so we have
proved what we set out to show—that no single program can exist to evaluate
CanGrant(∅, C,Auth, 〈S0, S0, qF 〉).

This undecidability result does not imply that a program cannot exist to
compute the value of CanGrant(∅, C,Auth, 〈S,O, op〉) for a specific command
set C. Such programs do exist, and they even exist for command sets that
correspond to DAC policies enforced by actual systems. The undecidability

Copyright 2011 Fred B. Schneider
All rights reserved.

108 Chapter 7. Discretionary Access Control

result nevertheless is important, because it illustrates how reduction techniques
from theoretical computer science can be used in reasoning about classes of
authorization mechanisms.

7.1.4 Implementation of DAC

The heart of any implementation of DAC is a scheme for representing autho-
rization relation Auth. That scheme must provide the means to

• evaluate whether 〈S,O, op〉 ∈ Auth holds and, therefore, subject S holds
the privileges needed to perform an operation op on some object O,

• change Auth in accordance with commands the DAC policy defines, and

• associate a protection domain with each thread of control, providing for
transitions between protection domains as execution proceeds.

In addition, support for two kinds of review is also often desired: (i) listing,
for a given subject, the privileges it holds for each object, and (ii) listing, for a
given object, the subjects and the privileges each holds for that object.

The obvious scheme for representing Auth is to employ a 2-dimensional
array-like data structure resembling an access control matrix. However, ac-
cess control matrices are likely to be sparse, because the typical subject holds
privileges for only a small fraction of all objects in a system. Implementors thus
favor data structures that store only the non-empty cells of the access control
matrix. We explore these in what follows.

7.2 Access Control Lists

An access control list for an object O is a list

〈S1,Privs1〉 〈S2,Privs2〉 . . . 〈Sn,Privs2〉

of ACL-entries. Each ACL-entry 〈Si,Privsi〉 is a pair, where Si is a subject,
Privsi is a non-empty set of privileges, and op ∈ Privsi holds if and only if
〈Si,O , op〉 ∈ Auth holds. Thus, an access control list encodes the non-empty
cells in some column of the access control matrix. For example, the access
control list for invtry.xls in Figure 7.1 is

〈fbs, {r}〉 〈mmb, {r, w}〉 〈jhk, {r}〉.

7.2.1 Access Control List Representations

Long access control lists are difficult for people to understand and update; they
are also expensive for enforcement mechanisms to scan when authorizing access
requests. Therefore, various representations have been proposed for shortening
the number of ACL-entries in an access control list and/or making important
but complicated kinds of updates easier to perform.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.2. Access Control Lists 109

Groups of Principals. Particularly in corporate and institutional settings,
users might be granted privileges by virtue of group memberships. Students
who enroll in a course, for example, are given access to that semester’s class
notes and assignments because they members of the class.

Group memberships change over time. If membership in a group confers
privileges for many objects, then adding or deleting a member requires updating
a separate access control list for each of those many objects. That will be
tiresome and error-prone. Moreover, updating each individual access control
list can be subtle. Suppose, for example, user U is in group G, and membership
in G confers privilege op for object O. If U is being dropped from G then
you might be tempted to delete op from the ACL-entry naming U in the access
control list for O. But this ignores the possibility that U might also be a member
of some other group that also confers op for O on its members, in which case U
being dropped from G should not cause U to lose op for O.

We can avoid these difficulties by allowing names for groups of subjects to
appear in access control lists.

Groups in Access Control Lists.
– A group declaration associates a group name with a set of subjects.

Membership in the set is specified either by enumerating its elements
or by giving a predicate that all subjects in the set must satisfy.7

– An ACL-entry 〈G,Privs〉, where G is a group name and Privs is a
set of privileges, grants all privileges in Privs to all subjects S that
are members of G.

Groups introduce indirection that eliminates the need to update multiple access
control lists when a group’s membership changes—only a group declaration
needs to be changed. Moreover, for an ACL-entry 〈G,Privs〉 on the access
control list for an object O, deleting S from G revokes S’s privileges to O only
if S does not appear elsewhere on that access control list (directly or through
membership in some other group).

Permission and Prohibition. That a given subject does not hold a specified
privilege is sometimes what’s important. Yet in order to conclude that S does
not hold op for an object O, we would have to: (i) enumerate all subjects granted
op by the access control list for O, (ii) check that S is not among them, and (iii)
presume the Principle of Failsafe Defaults. This is tedious. So some systems
allow a prohibition op to appear in an ACL-entry; as the term suggests, holding
op specifies that operation op is prohibited. The use of prohibitions does raise a
question about the meaning of an access control list that contains both a privilige
op and a conflicting prohibition op. Different systems resolve this conflict in
different ways, but it is not uncommon to decide an outcome according to the
relative order of the conflicting ACL-entries.

7An enumeration should be short enough so that the absence or presence subjects is unlikely
to be overlooked; a predicate for characterizing a set should be transparent enough so that it
defines all of the intended subjects and no others.

Copyright 2011 Fred B. Schneider
All rights reserved.

110 Chapter 7. Discretionary Access Control

7.2.2 Pragmatics

Designers and implementors of access control mechanisms are pimarily con-
cerned with three things: flexibility, understandability, and cost. Without suf-
ficient flexibility, we might not be able to specify the security policy we desire.
But support for flexibility usually brings complexity and cost. We eschew com-
plexity, because it introduces the risk that people will be unable or disinclined
to write or understand policies; it also tends to erode assurance in an access con-
trol mechanism’s implementation. And higher run-time costs are problematic
because they lead to favoring access-control policies that involve less checking
in preference to access-control policies that enforce what is needed.

Subjects. Flexibility for expressing a policy by using access control lists will
depend, in part, on what can be a subject. That set of subjects, in turn, is
constrained by the availability of efficient means for attributing (authenticating)
accesses, since the name of a subject making a request is what’s needed for
checking an access control list.

Operating systems typically have cheap mechanisms for authenticating users
and processes. Some language run-time environments do even better and can
attribute execution of each statement to the current chain of nested procedure
invocations—for example, allowing a protection domain U/pgm1/pgm2/pgm3 for
a subject that corresponds to execution of pgm3 invoked by a call within pgm2,
itself invoked by a call from pgm1, running on behalf of user U .

Independent of what constitutes a subject, care should be exercised in re-
cycling subject names. Otherwise, some future incarnation of a subject name
could inadvertently receive privileges held by to a past incarnation. One solution
is simply not to reuse subject names, but this (i) requires saving enough state
to ensure no future subject name duplicates a past name and (ii) constrains the
choice of subject names, potentially making policies harder to understand. The
more widely-adopted solution is, as part of deleting a subject from the system,
to delete that subject’s name from all access control lists.

Objects. The set of objects also constrains what policies can be expressed
using access control lists. Each object requires a reference monitor. The refer-
ence monitor intercepts every access to the object, and that restricts possible
choices for objects. Some implementations for reference monitors require that
all accesses cause traps; other implementations require that checks be in-lined
into all code that contains accesses. In addition, each access control list must be
stored in a way that its integrity is protected. Two solutions here are common:
(i) store the access control list with the object, so updates to the access control
list are checked by the reference monitor; (ii) store the access control list with
the reference monitor that reads it, so the mechanism protecting the integrity
of the reference monitor also protects the integrity of the access control list.

Operating system abstractions are particularly well suited to serve as the
objects. First, system calls are then the only way to access an object, and
a reference monitor is easily embedded in the operating system routine that

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 111

handles a system call. Second, operating system abstractions typically either
are large enough (e.g., files) to accommodate storing their own access control
lists or are relatively few in number (e.g., locks or ports) so that the operating
system’s memory can be used to store the access control lists.

ACL-entry Representations. Many start from a debatable premise that
checking shorter access control lists is faster.8 They advocate employing terse
representations for ACL-entries. One approach is to employ patterns and wild-
card symbols for specifying names of subjects or privileges, so that a single
ACL-entry can replace many; another approach is to replace a set of ACL-
entries that grants privileges with a set of ACL-entries imposing prohibitions
on the compliment, if the later is shorter. Terse representations are often harder
for humans to understand, though, so there is often a trade-off: human under-
standability versus computation time for enforcement. And cheap enforcement
of policies that nobody understands is arguably a dubious goal.

7.3 Capabilities

Abstractly, a capability is a pair 〈O,Privs〉; any subject that holds capability
〈O,Privs〉 is granted set of privileges Privs for operations on object O. Each
capability that a subject S holds thus corresponds to some non-empty cell in
S’s row of the access control matrix. And an authorization relation Auth is
faithfully represented when, for all subjects S and objects O, S holds capability
〈O,Privs〉 if and only if 〈S,O,Privs〉 ∈ Auth is satisfied.

Compliance with Auth requires that

• each subject S invoking an operation op on an object O must hold a
capability 〈O,Privs〉 where op ∈ Privs is satisfied, and

• no subject is able to hold a counterfeit or corrupted capability.

Notice that capabilities could provide the sole means for subjects to identify
and access objects, supplanting ordinary names and addresses. This is called
capability-based addressing. It is what we used above for solving the confused
deputy problem; bundles are really just capabilities.

When capabilities are being used, we must somehow prevent unauthorized
creation of new capabilities and prevent unauthorized changes to existing capa-
bilities. A variety of schemes have been developed for enforcing this capability
authenticity ; the classics are outlined below. Changes to Auth are then sup-
ported by providing specific routines that enable an authorized subject S to

• create a new object and, in so doing, receive a capability for that object,

8The premise is debatable because a terse representation might require additional compu-
tation or lookups per ACL-entry. And the cost of the additional computation per ACL-entry
might well exceed the savings of processing fewer ACL-entries.

Copyright 2011 Fred B. Schneider
All rights reserved.

112 Chapter 7. Discretionary Access Control

• transfer to other subjects any capabilities S holds, with attenuation and/or
amplification of privilege applied if specified, and

• revoke capabilities that were derived from capabilities S holds.

Consistent with the definition of DAC, privileges are controlled by the owner or
by subjects whose authority can be traced to the owner, because all capabilities
for an object O are derived from one first received by the subject that created
(owns) O.

Object Names. Unless the object name O in a given capability 〈O,Privs〉 al-
ways refers to the same unique object—independent of what subject is exercising
〈O,Privs〉 or of when that capability is being exercised—then transferring capa-
bilities or even storing them could have unintended consequences. For example,
if an object name O that designates an object Obj is later recycled to designate
object Obj ′, then by holding 〈O,Privs〉 long enough, a subject eventually gets
privileges to access Obj ′ (even though access to Obj was what had been autho-
rized).9 And if an object name O designates object Obj in one subject’s address
space but Obj ′ in another’s, then transferring 〈O,Privs〉 unwittingly gives the
recipient privileges to Obj ′ (even though the sender transferred a capability for
Obj).

One approach to naming objects is to use the virtual address where an object
is stored as the name of that object. This works because virtual address spaces
found on today’s processors are large enough (64 bits) for distinct objects each to
be assigned distinct virtual addresses from now until (almost) eternity. Object
names (virtual addresses) thus never need to be recycled, and different subjects
use the same name only if they are referring to the same object.

Address-translation hardware, however, is not the only way to implement a
mapping from names in capabilities to addresses where the corresponding ob-
jects are stored. A software run-time environment can be used. It maintains a
directory that maps object names to memory addresses. Subjects are expected
to invoke a run-time routine (passing an object name and an operation name)
to perform each operation on an object; this routine uses the directory to deter-
mine where the object is stored and then performs the named operation on the
object found at that location. Notice, this scheme allows objects to be relocated
dynamically, because updating only a single symbol table entry—rather than
the name field in every capability for that object—suffices. Also, either a real
or virtual address can be saved in the symbol table entry for an object.

Capability Archives. Often, a main memory representation is used for capa-
bilities held by executing subjects and an archive is kept on secondary memory
to store capabilities for objects (e.g., files) that persist even when subjects hold-
ing those capabilities are not executing. Capabilities for accessing the archive

9This problem can be avoided if the run-time environment’s object-deletion routine also
eliminates or revokes all capabilities naming the object. But, as will become clear, some
implementations of capabilities are not amenable to the bookkeeping necessary for this.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 113

are held by a single, special, trusted subject. This trusted subject always ex-
ecutes (it might be part of the operating system), and it retrieves appropriate
capabilities to populate main memory whenever execution of a new subject is
initiated. The retrieval function often allows human-readable names as input,
so the archive resembles a conventional directory.

7.3.1 Capabilities in Tagged Memory

Hardware support for tagged memory is rarely found in commodity computers.
Nevertheless, this approach to capability authenticity is worth understanding
because it is both elegant and illuminating.

In a computer having tagged memory, each register and each word of memory
is assumed to store a tag in addition to storing ordinary data. We employ 1-bit
tags in the hypothetical scheme outlined here. Capabilities are stored in words
having tags that equal 1; all other data is stored in words having tags that equal
0. For example, assume 64-bit memory words and that object names can be
63-bit virtual memory addresses. The hardware might then define a capability
〈O ,Privs〉 to be any two consecutive words that start on an even address, where
both words have tags that equal 1:

ta
g

object name

1 O
word 1 (even address)

ta
g

type privileges

1 T p0 p1 . . . pn

word 2 (odd address)

Here, Privs comprises a type T for object O and a bit string p0 p1 . . . pn. The
type defines how each of the bits in p0 p1 . . . pn is interprted.. For some types,
each bit pi specifies whether the capability grants its holder a corresponding
privilege priv i for O ; for other types (e.g., memory segments), pre-defined sub-
strings of the privileges field specify other properties of O (e.g., the segment
length) needed for enforcing an access control policy.

Tag bits alone are not sufficient to ensure that capabilities cannot be coun-
terfeited or corrupted, though. The processor’s instruction set also must be
defined with capability authenticity in mind. Typically, this entails enforcing
restrictions on updates to words whose tags equal 1 and on changes to tags. For
example, a user-mode instruction10

cap copy @src, @dest

for copying two consecutive words of memory from source address @src to des-
tination address @dest would cause a trap unless (i) the source and destination
both start on even addresses, (ii) the tags on both words of the source equal
1, and (iii) the subject has read access to the source and write access to the
destination.

User-mode invoke and return instructions for invoking operations on ob-
jects would also impose restrictions. For example, if cap is a capability for object
O and op is an integer then execution of

10We write @w to denote the address of w.

Copyright 2011 Fred B. Schneider
All rights reserved.

114 Chapter 7. Discretionary Access Control

invoke op, @cap

might work as follows. A trap occurs if cap is not a capability, 0 ≤ op ≤ n
does not hold, or privilege bit pop in cap equals 0. Otherwise, execution of
the invoke (i) loads integer op into some well known register (say) r1, (ii)
synthesizes a capability retCap of type return that records in its object name
field the address of the instruction following the invoke, (iii) stores retCap
someplace accessible to execution by O , (iv) pushes @retCap onto the run-time
stack, and (v) executes instructions starting at address O .

When an invoke instruction is executed, the code starting at O is presumed
to be a case statement which, based on the contents of r1, transfers control to
operation number op of O . Control is later transferred back to the invoker by
popping @retCap off the run-time stack and executing

return @retCap

which loads the program counter with the contents in the object name field of
retCap (the previously stored address of the instruction immediately after the
invoke in the caller) and also, to prevent reuse, sets the tags in retCap to 0.
Executing a return causes a trap if @retCap cannot be read or if retCap is not
a capability that has type return.

Ordinary instructions executed in system mode can suffice for supporting
most other functionality involving capabilities, provided executing those instruc-
tions in user mode causes a trap if the instruction attempts to set a tag to 1 or
change the contents of a word having a tag equal 1. System routines executed
in system mode would likely be provided for the following functionality.

• New objects and their capabilities are created by invoking a system rou-
tine that instantiates the object, generates a corresponding capability cap,
stores cap in the caller’s address space, and returns @cap to the caller.

• Capabilities are propagated from one subject to another that do not share
an address space (so cap copy cannot be used) by invoking system routines
to send and receive capabilities. The operating system presumably has
access to every subject’s address space and can execute the cap copy
instructions needed.

• The functionality of the cap copy instruction is extended to perform at-
tenuation and amplification, where desired, by having the source and des-
tination subjects invoke system routines.

– Attenuation is supported by a system routine that takes as inputs (i)
a set Rmv of privileges to remove and (ii) the address of a capability
having some set Privs of privileges; it returns the address of another
capability for the same object but with Privs − Rmv as its set of
privileges.

– Amplification is supported by a system routine that takes as inputs
the addresses for two capabilities: one capability names an object

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 115

ta
g

object name

1 O
word 1 (even address)

ta
g

type re
a
d

w
ri

te

ex
ec

u
te

length

1 0 . . . 0 R W X Len
word 2 (odd address)

Figure 7.7: Example Format of Capability for a Memory Segment

O with some type T and a set PrivsO of privileges, and the second
capability gives type T as its name11 (and type as its type) and a
set PrivsA of privileges; it returns the address of a new capability for
object O with type T but having PrivsO ∪ PrivsA as its privileges.

As part of this scheme, capabilities can be used to ensure that appropriate
privileges are held for each and every memory access that a subject makes.
Figure 7.7 suggests a format for such a memory segment12 capability; it is an
instance of the capability format given above. The type (0...0) signifies that the
capability is for a memory segment; O gives the starting address of the memory
segment; privileges bits p0, p1, and p2 (labeled R, W , and X in Figure 7.7)
specify privileges for operations read, write, and execute; and suffix p3 p4 . . . pn

of the privileges specifies the segment length.
Such memory segment capabilities could be integrated into a processor’s

memory access logic, as follows.

• A set of segment capability registers is provided to store capabilities for
memory segments.13 And a memory access is allowed to proceed only if
the address (i) names a word in some memory segment whose capabil-
ity currently resides in a segment capability register and (ii) the requested
operation (read, write, or execute) is one for which the corresponding priv-
ilege bit is set in that capability. An access-fault trap occurs, otherwise.

• The processor provides a system-mode instruction

load scr scr , @cap

for loading a segment capability register scr with the memory segment
capability stored at address @cap; executing this instruction causes a trap
in user mode or when cap is not a capability whose type is 0...0.

The operating system then provides routines that allow execution to map
and unmap memory segments. The set of mapped memory segments at any

11When typed objects are not supported, then the hardware might require that the two
input capabilities name the same object.

12A memory segment is a contiguous region of an address space; it is defined by a starting
address and a length.

13In some architectures, these register might contain a capability for a segment that itself
contains capabilities for segments. This additional level of indirection allows a small number
of segment capability registers to support accessing a significantly larges number of segments.

Copyright 2011 Fred B. Schneider
All rights reserved.

116 Chapter 7. Discretionary Access Control

given time defines a protection domain by establishing what memory can be
addressed, hence what set of capabilities the executing subject holds. In some
systems, the set of mapped memory segments for a given subject is partitioned
into subsets: memory accessible to every subject, memory accessible only to
this subject throughout its execution, and memory accessible because some
operation on a given object is being executed.

An operating system might support having a larger number of memory seg-
ments be mapped at a given time than there are segment capability registers.
To accomplish this, system software multiplexes the segment capability registers
in much the same way that a small set of page frames is multiplexed to create
a much larger virtual memory. Specifically, the operating system maintains
a set MappedSegs of the capabilities for memory segments that currently are
considered mapped. Whenever an access fault trap occurs, the corresponding
trap-handler checks whether MappedSegs contains a capability seg cap (say) for
the memory segment encompassing the address that caused the access-fault. If
MappedSegs does, then the trap handler replaces the contents of some segment
capability register with seg cap and retries the access; otherwise, the memory
access attempt is deemed to violate the security policy.

7.3.2 Capabilities in Protected Address-Spaces

Modern processor hardware invariably enforces some form of memory protec-
tion, if only to protect operating system integrity by isolating its code and data
from user programs. This is achieved by allowing memory to be partitioned
into one or more regions and, for each, enforcing access restrictions. Although
coarse-grained in comparison to tagged memory, even this simple form of mem-
ory protection suffices for implementing capability authenticity.

The basic strategy is to segregate capabilities and store them in memory
regions that cannot be written by execution in user mode. Operating sys-
tem routines, which execute in system mode, are granted write-access to these
memory regions. And functionality that requires creating or modifying capa-
bilities is implemented by the operating system (rather than by special-purpose
instructions, as for tagged memory). So there would be system routines for
instantiating a new object (and its corresponding capability), copying capabil-
ities, sending and receiving capabilities between subjects, and the invocation
and return from operations on objects (with attenuation and amplification).

Capabilities Stored in Virtual Memory Segments. One approach to
implementing this protected address-space approach builds on segmented virtual
memories. A virtual address here is a bit string; some predefined, fixed-length
prefix of that bit string is interpreted as an integer s that names a segment,
and the remaining suffix specifies an integer offset for a word w in the segment:

segment offset

s w
address

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 117

segment table
register

-
Name Length re

a
d

w
ri

te

ex
ec

u
te

Start

s len R W X

segment table
segment

s

-

Figure 7.8: Addressing with a Segment Table

A segment table, which comprises a set of segment descriptors, is used during
execution to translate virtual addresses into real addresses. See Figure 7.8.
Each segment descriptor gives the name, length, and starting address for a
segment, as well as access bits (R, W, and X) that indicate whether words in
the segment can be read, written, and/or executed. The segment table thus
defines an address space and access restrictions on the contents of that address
space.

The operating system associates a segment table with an executing process
by loading the (real) address of that segment table into the processor’s segment
table register, which is considered part of the processor context.14 We can thus
arrange for execution by the operating system and for execution by each process
to use different segment tables and, therefore, to have different (virtual) address
spaces and/or different access restrictions being enforced.

The use of segments to store capabilities should now come as no surprise.
The access bits in segment descriptors allow us to construct one or more virtual
address spaces for which writes to those segments are prohibited. So, by com-
pelling all user-mode execution to use such segment descriptors for accessing
segments that contain capabilities, the operating system prevents user-mode
execution from counterfeiting or corrupting capabilities. Subjects are imple-
mented as user-mode processes, with the set of capabilities held by a subject
defined to be those capabilities stored in designated segments (which user-mode
execution can read but not write).

The size and format of capabilities being implemented here is defined by
software. And the choice of what segments are designated for storing capabilities

14The processor context comprises the general-purpose registers, the program counter, and
any other processor state that must be saved and restored when an operating system time-
multiplexes the processor over a collection of tasks.

Copyright 2011 Fred B. Schneider
All rights reserved.

118 Chapter 7. Discretionary Access Control

is unconstrained. Often a convention is adopted (e.g., only segments named
with low-numbers store capabilities), but alternatively the operating system
could itself store the names of all segments dedicated to storing capabilities.
Segment descriptors on some architectures contain bits unused by the address-
translation hardware, and a run-time environment might employ these bits to
indicate whether a segment stores capabilities.

The use of memory segments to store capabilities does not preclude the use
of capabilities to control access to memory. As above for the tagged-memory
implementation of capabilities, the operating system would provide routines
to map and unmap a memory segment. The map and unmap routines for a
segment s would check that the invoker holds a capability caps for s, where
caps specifies appropriate read, write and/or execute access privileges. If the
invoker does hold such a capability, then map (unmap) modifies the invoker’s
segment table and adds (deletes) the segment descriptor for s. The segment
table thus simulates the set of segment capability registers, which explains why
the information found in a segment descriptor is so similar to what is found in
a memory segment capability.

When capability authenticity is implemented by memory segments, a seg-
ment table specifies which capabilities the executing process holds and which
other data it can access (because those data segments have been mapped). So
a segment table defines a protection domain, and protection-domain transitions
require changing that segment table.

For example, protection-domain transitions typically accompany operation
invocations. An operating system routine to invoke an operation might expect
to be passed two arguments:15 the name op of the operation and the address
@cap of a capability for an object on which op is to be performed. Execution
then proceeds as follows.

1. Authorization. Validate that (i) the segment named by @cap is dedicated
to storing capabilities (so cap is a capability), (ii) the caller can read cap
(and thus holds that capability), and (iii) cap grants permission for op.

2. Segment Table Construction. If the tests in step 1 are satisfied then build
a segment table containing segments for capabilities and state that should
be accessible when performing op on the object named by cap.

3. Control Transfer. In software, orchestrate the designated transfers of con-
trol to and from op in obj : (i) construct a capability retCap of type return
for the return address, (ii) store retCap in a segment of capabilities read-
able when executing in the invoked operation, (iii) push @retCap onto the
run-time stack, (iv) load the segment table register with the address of
the new segment table, and (v) transfer control to the code for op in obj .

Run-time environment support for other functionality involving capabilities
would be built along similar lines.

15These arguments give the same information that the invoke instruction expects to find
in registers for the tagged-memory implementation of capabilities discussed above.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 119

Capabilities Stored in Kernel Memory. Even if a segmented virtual mem-
ory is not supported by the processor, some form of memory isolation usually
will be. Hardware support for a single memory region that cannot be corrupted
by user-mode execution is typical, because this suffices for protecting an oper-
ating system’s integrity. To implement capabilities here:

• The memory region stores all capabilities and identifies which subject(s)
hold each capability.

• Each subject is implemented by a user-mode process.

• Operating system routines provide the sole means by which user-mode
execution can read or change the memory region.

Various schemes have been employed for identifying what capabilities a process
holds. Invariably, these schemes associate a table, herein called a c-list (for “ca-
pability list”), with each process. Each entry in a c-list stores a single capability
and is identified by its location in the table. References to capabilities give this
location, so they are indirect and relative to the c-list implicitly associated with
the process making the reference. Some schemes have separate c-lists for every
process; in others, c-lists are shared by multiple processes.

Operating system routines then provide the sole means for creating, examin-
ing, and manipulating capabilities and the c-lists that store them. For example,
send and receive routines might be provided to pass capabilities from one process
to another, whether or not those processes share a c-list. Specifically, a process
P might invoke send, giving a destination process P ′ and locations for some
capabilities that would then be buffered at P ′ for receipt; by invoking receive,
P ′ would move any buffered capabilities to its c-list and obtain the locations
where they are stored.16

The operating system would also provide routines for creating and managing
c-lists. The routine for new process creation would presumably take an argument
specifying whether the new process will share the caller’s c-list or have a new
one (and, for a new c-list, what subset of the caller’s capabilities and privileges
to include). And invoke/return operations might be implemented as operating
system routines, in order to allow execution of an invoked routine to use a new
c-list. This new c-list would be populated from the caller’s c-list with copies
of capabilities the caller indicates in arguments as well as capabilities obtained
though attenuation and amplification of capabilities the caller indicates.

7.3.3 Cryptographically Protected Capabilities

The protections required for capability authenticity are well matched to the
security properties that digital signatures provide. Consequently, digital signa-
tures provide an alternative to hardware-implemented tags or protected mem-
ory. The costs—both in compute time and space—limit the applicability of

16An operating system call to examine the capability stored for each index would then be
used by P ′ to determine what the new capabilities authorize.

Copyright 2011 Fred B. Schneider
All rights reserved.

120 Chapter 7. Discretionary Access Control

this approach, but digital signatures are the only practical way to implement
capabilities in some settings.

Our starting point is a digital signature scheme comprising algorithms to
generate and to validate signed bit strings, where the following properties hold.

• Unforgeability. For any bit string b, only those principals that know private
key k can generate k-signed bit string Sk(b).

• Tamper Resistance. Principals that do not know k find it infeasible to
modify Sk(b) and produce a different k-signed bit string Sk(b′).

• Validity Checking. Any principal that knows the public key K correspond-
ing to a private key k can validate whether something is a k-signed bit
string.

We then implement capabilities as signed bit strings, because the Unforgeabil-
ity and Tamper Resistance properties imply capability authenticity17 and the
Validity Checking property gives a way for system components to ascertain
whether a bit string purporting to be a capability is authentic.

Specifically, for cap a bit string that gives the name, type, and privileges for
an object O , the k-signed bit string Sk(cap) serves as a capability that grants
its holders the specified privileges for O provided:

(i) private key k is known only by component(s) authorized to generate ca-
pabilities for O , and

(ii) corresponding public key K is available to any principal needing to check
the authenticity of a capability Sk(cap).

Notice that code to generate capabilities or to check capability authenticity
need not execute in system mode—user mode works just fine for performing the
necessary cryptographic calculations. Confidentiality of private keys used in
such user-mode computations is required, but this confidentiality can be imple-
mented through memory isolation typically provided by an operating system.
And digital certificates signed by some well-known trusted authority are an
obvious means for making public keys available for Validity Checking.

If, as usual, each component has a distinct private key, then capabilities gen-
erated by different components require different public keys to validate them.
This built-in means of attribution allows capabilities to be ignored when they
have been generated by components lacking the authority. In some systems,
only one component, such as the operating system, is authorized to create ca-
pabilities. So a single public key valdiates the authenticity of all capabilities. In

17More precisely, this implementation of capability authenticity requires a digital signature
scheme that is secure against selective forgery under a known message attack. Security against
a known message attack accounts for the possibility that attackers might have access to some
authentic k-signed bit strings (i.e., capabilities) but would not be able to get an arbitrary bit
string signed (because any reasonable security policy the system enforces should preclude gen-
erating arbitrary capabilities on demand). Selective forgery is the right concern here, because
we want to prevent an attacker from generating capabilities that grant specific privileges for
specific objects.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 121

other systems, a well known mapping defines which public key validates capabil-
ities for each given object; the mapping typically uses some characteristic(s) of
an object, such as its type, to select that public key. Capabilities for all objects
of each given type T might, for example, be validated by a corresponding well
known public key KT .

Capabilities implemented as signed bit strings are easy to transfer between
subjects, protection domains, and even between computers. It is just a matter of
copying the bits (assuming infrastructure is in place to disseminate public keys
that can be trusted for checking capability authenticity). However, performing
amplification and attenuation for a capability Sk(cap) being transferred is an-
other matter. The Tamper Resistance property implies that a component with
knowledge of private key k must be involved—either to generate from scratch
a capability with modified privileges or to modify the privileges in Sk(cap) di-
rectly. But sharing private keys is risky, and cryptographic computations create
performance bottlenecks. So system designers often do not provide support for
amplification and attenuation when capabilities are being implemented crypto-
graphically. The Principle of Least Privilege now becomes harder to support,
leading to applications that are not as secure as they could be.

Three costs are noteworthy when a digital signature scheme is used to sup-
port capability authenticity: the amount of space required to store a k-signed
bit string, the amount of time required to generate one, and the amount of
time required for validity checking. To facilitate comparisons with schemes that
use hardware-implemented tagged memory or protected address-spaces, suppose
that the name, type, and privileges conveyed by a capability can together be
represented in 64 bits.

For a digital signature scheme being deployed in 2010, NIST recommends
2048-bit RSA with SHA-256. The cost estimates that follow are derived from
available implementations of those algorithms on commodity hardware, although
the conclusions hold for other digital signature algorithms as well.

• To create a k-signed bit string b, a tag is appended to b. The length of this
tag depends on the RSA key size and not on how long b is; for 2048-bit
keys, that tag will be approximately 2048 bits. Thus, our implementation
of capabilities as signed bit strings entails a substantial space overhead—a
2048 bit tag is required in order to protect 64 bits of content.

• The execution time required to create or check the validity of a tag for a 64
bit string b is dominated by the RSA key size. Creation of a k-signed bit
string Sk(b) using a 2048-bit RSA key takes orders of magnitude longer
than the time required for a kernel call; validity checking takes somewhat
less time but the execution time still is orders of magnitude longer than
the time required for a kernel call.

Needless to say, cryptographic protection is a relatively expensive way to im-
plement capability authenticity.

Cryptographically implemented capabilities, however, can be attractive in
distributed systems. Consider the alternatives and what they cost for that

Copyright 2011 Fred B. Schneider
All rights reserved.

122 Chapter 7. Discretionary Access Control

setting. If hardware-implemented tags or protected memory regions are used
to implement capabilities then transmitting a capability from one computer to
another requires the operating systems at those computers to communicate.
The integrity and authenticity of that communiation must be ensured. Digital
signatures are the usual defense here, but signature generation and validity
checking now become part of the cost of transmmitting a capability between
computers.

In addition, cryptographic protection allows the authenticity of a capability
to be checked locally in user mode, which can be considerably cheaper than
querying the operating system on the (possibly remote) computer that generated
that capability. Also, transferring a capability between two principals executing
on the same computer does not require the operating system to serve as an
intermediary. So when cryptographic protection is used, the execution times
for capability authenticity checking or transfer operations need not incur the
expense of inter-processor communication.

7.3.4 Capabilities Protected by Type Safety

Programs written in type-safe programming languages declare a type for each
variable. Execution is then restricted accordingly. Since support for capabilities
also involves enforcing restrictions on execution, a natural question is whether
the restrictions type safety introduces can be used to implement the restrictions
capabilities require. We answer in the affirmative here by defining types for
capabilities, where type safety implies (i) possession of a suitable capability is
necessary for executing each operation defined on an object, and (ii) capability
authenticity is enforced.

Type Safe Execution. A type T defines (i) a set valsT containing values
that includes the special constant ⊥ indicating uninitialized, and (ii) a set opsT

of operations defined on values in valsT . The following restrictions are then
enforced for type-safe execution:

Type-Safe Assignment Restriction. Throughout execution, variables
declared to have type T only store elements of valsT .

Type-Safe Invocation Restriction. Throughout exececution, only op-
erations in opsT are invoked for values in valsT .

And for any types T and T ′, relation T � T ′ is defined to hold if and only if
valsT ⊇ valsT ′ and opsT ⊆ opsT ′ both hold. Thus, T � T ′ characterizes when
the type-safe execution restrictions above are not violated by storing values of
type T ′ in variables declared to have type T .

A static check of the program text can establish that execution of a given
assignment statement always complies with the Type-Safe Assignment Restric-
tion, as follows. Assignment statement v := Expr evaluates Expr and stores the

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 123

resulting value in variable v. Letting type(x) denote the type of a variable or ex-
pression x, the following condition implies that Expr ∈ valstype(v) holds, which
is what Type-Safe Assignment Restriction requires for executions of v := Expr .

Type-Safe Assignment. Assignment statement v := Expr exhibits type-
safe execution provided type(v) � type(Expr) holds.

The condition is statically checkable because the declaration of v provides type(v),
and the declarations of the variables and operators in Expr suffice for deducing
a type for the value Expr produces.

Next, consider an invocation statement

call obj .m(Expr1 , . . . ,Expri , . . . ,ExprN) (7.3)

Here, obj is a program variable that designates some object and m names an
operation. The definition for type(obj) presumably contains declarations for all
methods supported on instances of type(obj), where a declaration for a method
m would have the following form.

m : method(p1 :T1, . . . , pi :Ti, . . . , pN :TN) bodym end

Execution of invocation statement (7.3) assigns the value of each argument
Expri to the corresponding formal parameter pi and then executes bodym.

To ensure type-safe execution for invocation statement (7.3), we must be con-
cerned with Type-Safe Assignment Restriction and with Type-Safe Invocation
Restriction. Assume that checking has established bodym will exhibit type-safe
execution when started in a state where pi = Expri holds for 1 ≤ i ≤ N . Type-
Safe Assignment Restriction for (7.3) is then implied by Type-Safe Assignment
Restriction for pi := Expri where 1 ≤ i ≤ N which, according to Type-Safe
Assignment, requires Ti � type(Expri) to hold for 1 ≤ i ≤ N . And Type-Safe
Invocation Restriction requires that obj 6= ⊥ and m ∈ opstype(obj) hold. Three
conditions thus characterize type-safe invocation statements.

Type-Safe Invocation. An invocation statement

call obj .m(Expr1 , Expr2 , . . . , ExprN)

for a method

m : method(p1 :T1, . . . , pi :Ti, . . . , pN :TN) bodym end

exhibits type-safe execution provided the following hold:

– obj 6= ⊥
– m ∈ opstype(obj)

– type(pi) � type(Expri) for 1 ≤ i ≤ N .

Condition, obj 6= ⊥, must be checked at run-time if analyzing the program
text cannot guarantee that it always holds prior to reaching the invocation
statement; the other two conditions can be discharged statically by using the
type declarations present in the program text.

Copyright 2011 Fred B. Schneider
All rights reserved.

124 Chapter 7. Discretionary Access Control

Support for Capabilities. We now can explore how capabilities might be
implemented using types. For a type T whose values are objects and whose
operations include m1, m2, ..., mN (but perhaps others too), the capability type

cap(T){m1,m2, . . . ,mN}

defines a set of values identical to the values of type T and defines a set of oper-
ations that contains only those operations both supported by T and appearing
in list m1, m2, ..., mN of operations the capability type authorizes:

valscap(T){m1,m2,...,mN} = valsT

opscap(T){m1,m2,...,mN} = opsT ∩ {m1,m2, . . . ,mN}

Substitution into the definition of �, we get that

cap(T){m1,m2, . . . ,mP } � cap(T ′){m1
′,m2

′, . . . ,mQ
′}

holds if and only if T � T ′ and {m1,m2, . . . ,mP } ⊆ {m1
′,m2

′, . . . ,mQ
′} hold.

Therefore, if C � C ′ holds for capability types C and C ′ then a Type-Safe
Invocation for operation m of an object designated by variable obj having type
C will exhibit type-safe execution even if an object having type C ′ is stored in
obj .

To better understand type-safety for capabilities, consider capabilities cap1
and cap2 for objects of type dbase, which supports three operations: read(x , val),
update(x , val), and reset().

var cap1 : cap(dbase){read,update}
cap2 : cap(dbase){read}

Assume that cap1 designates object db1 and cap1 designates object db2 .
An invocation statement call cap1 .update(. . .), when its argument values

have suitable types, satisfies Type-Safe Invocation because cap1 6= ⊥ holds (by
assumption) and cap1 is declared to have a capability type that includes oper-
ation update (since opstype(cap1) = {read,update}). But call cap2 .update(. . .)
cannot satisfy Type-Safe Invocation, since update ∈ opstype(cap2) does not hold;
and this is exactly what we should desire—cap2 does not convey priviliges for
operation update and type-safety is prohibiting the attempt to invoke update
through cap2 .

Assignment statement cap2 := cap1 satisfies Type-Safe Assignment because
type(cap2) � type(cap1) holds. This assignment stores into cap2 a capability for
db1 that authorizes fewer operations than cap1 does; the assignment statement
implements attenuation of privilige. Assignment statement cap1 := cap2 does
not satisfy Type-Safe Assignment since cap2 � cap1 does not hold. This is
desirable, because it means that program fragment

cap1 := cap2 ; call cap1 .update(. . .)

is not type safe, as we should want—allowing the fragment to execute would
enable a subject holding a capability (cap2) for db2 that authorizes only read

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 125

operations to invoke an update operation on db2 (since invocation statement
call cap1 .update(. . .) is type safe).

So knowing that obj 6= ⊥ will hold before a type-safe invocation statement
is executed suffices to conclude that a subject possesses not just any capability
but possesses a suitable capability to proceed with the invocation. No run-time
checks concerning priviliges need to be performed; that aspect of capability
semantics is enforced through type-checking analysis of program text before
program execution starts. Moreover, when a program-flow analysis determines
that obj 6= ⊥ is necessarily true prior to reaching a given invocation statement,
then no run-time check at all is required for an invocation.

The other defining characteristic for an implementation of capabilities is
that subjects are prevented from altering or forging capabilities—capability au-
thenticity. Type-Safe Assignment is what prevents a subject from altering a
capability to increase priviliges. In particular, Type-Safe Assignment ensures
that an assignment statement never stores a capability into a variable allowing
more operations on some object than were allowed by the variable originally
storing the capability.

Finally, we prevent subjects from forging capabilities by restricting the class
of expressions whose evaluation produce values with capability types. This class
of capability expressions must, at a minimum, include (i) expressions that man-
ufacture a capability whenever a new object is created and (ii) expressions that
materialize a capability already held by the subject evaluating the expression.
To satisfy (i), we introduce capability expression new(T); when new(T) is exe-
cuted, the run-time environment creates a new object having type T and returns
a capability authorizing all methods for that new object. And, to satisfy (ii),
we define all variables declared with capability types to be capability expres-
sions, thereby allowing existing capabilities to be retrieved for copying (perhaps
between subjects) and to be used for invocations.

Capability-Valued Expressions. An expression Expr is defined to have
capability type cap(T){m1,m2, . . . ,mN} if

– Expr is an invocation of the built-in function new(T) and m1, m2,
... , mN is the list of all methods that objects of type T support.

– Expr is a variable or function application declared to have type
cap(T){m1,m2, . . . ,mN}.

Type-Safe Assignment allows attenuation (as was noted above), but it does
not allow amplification. However, a form of amplification is intrinsic in the usual
scope rule for variables declared within an object. This scope rule stipulates that
such variables may be named within that object’s methods but not outside.
For example, Figure 7.9 gives a definition for type dbase. It declares a single
variable dbCntnt , which stores the state of a dbase instance; the scope rule
allows dbCntnt to be named within the body of operations read, update, and
reset but not elsewhere. A form of amplification thus occurs during execution
of the methods, because the body of a method can directly access the object’s
variables. Moreover, if variables with capability types are declared within an

Copyright 2011 Fred B. Schneider
All rights reserved.

126 Chapter 7. Discretionary Access Control

type dbase = object
var dbCntnt : map
read: method(x:field , var val :field)

val := dbCntnt [x]
end read

update: method(x:field , val :field)
dbCntnt [x] := val
end update

reset: method()
dbCntnt := ∅
end reset

end dbase

Figure 7.9: Definition of type dbase

object, then only by executing a method can these capabilities be exercised. So,
a subject executing a method has amplified priviliges relative to what it had
when executing outside the method.

7.3.5 Revocation of Capabilities

Revoking a subject’s authorization can be subtle when Auth is implemented
using capabilities. First, deleting 〈S,O,Privs〉 from Auth requires finding and
invalidating not just one copy but all copies of capability 〈O,Privs〉 that S holds.
Second, S could have passed copies of 〈O,Privs〉 to other subjects, and they in
turn could have passed those copies still further. The rationale for revoking S’s
authorization to O might well apply to these other subjects, so we would need to
find and invalidate their copies of 〈O,Privs〉 too. In sum, support for revocation
requires an efficient means to invalidate all copies of a given capability held by
some set of subjects whose elements might not be easy to enumerate.

Brute-Force Search. Brute-force searching for copies of a capability and
deleting them is one obvious approach to revocation. However, brute-force
search is feasible only for relatively small storage regions. Capabilities imple-
mented by hardware-implemented tagged memory or by cryptographic protec-
tion can be stored anyplace in a subject’s address space; brute-force search
is infeasible here. But brute-force search is feasible when capabilities are im-
plemented by protected address-spaces or by strong typing and declarations,
because then all capabilities are stored in a small number of easily identified
memory locations.

Revocation Tags. An alternative to finding and deleting invalidated capa-
bilities is simply to block access attempts that use them. This is implemented
by deploying a reference monitor not only to check capability authenticity but

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 127

also to check whether a capability has been invalidated.
One approach is to include a revocation tag in each capability. A capability

is now a triple 〈O,Privs, revTag〉. And, for each object O, we define a set
RevTagsO to store those revocation tags appearing in invalidated capabilities
for O.

• Revocation. A capability 〈O,Privs, revTag〉 is invalidated by invoking an
operation that adds revocation key revTag to RevTagsO. This operation
is authorized only if the revocation privilege is present in Privs.

• Validity Checking. An access attempted through 〈O,Privs, revTag〉 is de-
nied by the reference monitor if revTag ∈ RevTagsO holds, because then
〈O,Privs, revTag〉 has been invalidated.

Capability authenticity is presumed to prevent subjects from changing the re-
vocation tag in a capability; the operating system is presumed to protect the in-
tegrity of RevTagsO and to provide the support for adding elements to RevTagsO

(but preventing other changes to RevTagsO).18

Capabilities that incorporate revocation tags can be used to support selec-
tive revocation. Here, operations are provided to delete various subsets of the
capabilities that subjects hold for a given object. It suffices for there to be a
capability facsimile generation operation, with a corresponding privilege (say)
fg . The holder of a capability 〈O,Privs, revTag〉 with fg ∈ Privs invokes fac-
simile generation to obtain a new capability 〈O,Privs ′, revTag ′〉 for O, where
Privs ′ ⊆ Privs ′ holds and revTag ′ is a fresh revocation tag.

Sets of subjects whose authorization for an objectO might have to be revoked
together are then given capabilities that share the same revocation tag. Notice,
if some subject S passes a capability 〈O,Privs, revTag〉 to another subject, and
unbeknown to S that capability is forwarded further, then all those copies of
〈O,Privs, revTag〉 also would be invalidated when revTag ∈ RevTagsO holds.
Revocation tags thus support selective revocation but only to the extent that
(i) prior to disseminating capabilities to subjects we can anticipate what sets of
capabilities should together be invalidated (because all capabilities in such a set
must share a revocation tag), and (ii) these sets are non-intersecting (because
a capability may contain only one revocation tag).

Capability Chains. Indirection is the basis for a second approach to blocking
the use of invalidated capabilities. The idea is simple. We permit the object
named in a capability to be another capability. Now chains of capabilities
that lead to the capability for an object O can be constructed. And an access

18In the implementation just sketeched, RevTagsO grows without bound. This could be
problematic given finite memory. But an element revTag can be removed from RevTagsO once
all capabilities containing that revocation key have been deleted. It is possible to ascertain
that those capabilities have all been deleted, for example, when a subject that cannot share its
capabilities with other subjects is terminated and all of its storage is reclaimed. In addition,
RevTagsO can be deleted when object O is deleted, so for short-lived objects the storage
required by RevTagsO is unlikely to be a problem.

Copyright 2011 Fred B. Schneider
All rights reserved.

128 Chapter 7. Discretionary Access Control

C2 Privs3 C3

C3 Privs4 C4

C4 Privs5 C5

6

6

C1 Privs2 C2

C2 Privs6 C6

C6 Privs7 C7

6

6

6

O Privs1 C1

C1 Privs8 C8

666

Figure 7.10: Chain of Capabilities

to O is permitted using a capability C if there is a chain of capabilities that
starts from C, ends with a capability for O, and each capability in the chain
satisfies capability authenticity as well as containing privileges that authorize
the requested access to O.19

Figure 7.10 gives an example. Each of the capabilities there (including C1)
starts a chain that ends with a capability for object O. For an access using one
of the capabilities Ci depicted in the Figure 7.10, a reference monitor would
follow the chain from Ci to C1 (the capability for O), checking authenticity for
each capability it traverses and checking that the requested access is authorized
by that capability.

Deleting all instances of a capability C that appears in a chain severs the
chain. Afterwards, access attempts that required traversing C in order to reach
some capability 〈O,Privs〉 no longer succeed. For example, if all copies of C2

in Figure 7.10 are deleted, then access to O from capabilities C3, C4, C5, C6

or C7 is no longer authorized; access to O from C1 or C8 is unaffected, though.
The authorization for a subject S to delete a capability C might derive from
S being authorized to update the memory that contains C. Or it might derive
from S holding a capability 〈C,Privs〉 where delete ∈ Privs holds and the delete
privilege is required by system routines that delete objects.

Capability chains support richer forms of selective revocation than revoca-
tion tags do. Deleting (all copies of) a capability C invalidates a set of ca-

19There are other sensible interpretations for what operations are authorized by a chain of
capabilities. We might, for example, require that the last capability in the chain authorize the
operation but other capabilities traversed in the chain grant an indirect privilige. We might
also require that the subject making the access hold all capabilities in the chain.

Copyright 2011 Fred B. Schneider
All rights reserved.

7.3. Capabilities 129

pabilities, namely the set comprising all capabilities on chains that contain C.
Because chains can overlap, deletion of (all instances of) a single capability
could invalidate a union of sets of capabilities, where each set could have each
been invalidated by itself. This is illustrated in Figure 7.10. Deleting all copies
of C3 also invalidates C4 and C5; deleting all copies of C6 also invalidates C7;
and deleting C2 invalidates the union of those sets plus C3 and C6. Thus, in
contrast to revocation tags, indirection allows non-disjoint sets of capabilities
to be invalidated.

A particularly attractive way to implement capabilities that name other ca-
pabilities is to employ the address of a capability as the name for that capability.
This would mean there can be multiple copies of the first and last capabilities in
a chain but only one copy of every other capability appearing in the chain. For
the structure depicted in Figure 7.10, for example, multiple copies of C1, C5, C7,
and C8 are possible but not of the other capabilities. With this implementation,
deleting a single interior capability C of a chain always deletes all copies of that
capability. Subjects whose authorization to access an object O might have to
be revoked should be given capabilities to other capabilities rather than being
given capabilities directly for O; and each subject that might have to revoke
authorization from holders of a given capability C should be given a capbility
that appears someplace on the chain from C to the capability for O.

Copyright 2011 Fred B. Schneider
All rights reserved.

