
Data Center Storage and
Networking

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking

December 1, 2014

Slides from ACM SOSP 2013 presentation on “IOFlow: A Software-Defined Storage
Architecture.” Eno Thereska, Hitesh Ballani, Greg O'Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, and Timothy Zhu. In SOSP'13, Farmington, PA, USA.
November 3-6, 2013. “

Goals for Today

• IOFlow: a software-defined storage architecture

– E. Thereska, H. Ballani, G. O'Shea, T. Karagiannis, A.
Rowstron, T. Talpey, R. Black, T. Zhu. ACM Symposium
on Operating Systems Principles (SOSP), October 2013,
pages 182-196.

Background: Enterprise data centers

• General purpose applications

• Application runs on several VMs

• Separate network for VM-to-VM

traffic and VM-to-Storage traffic

• Storage is virtualized

• Resources are shared

Switch Switch Switch

S-NIC S-NIC

S-NIC NIC S-NIC NIC

VM
VM
VMVirtual

Machine

vDisk

VM
VM
VMVirtual

Machine

vDisk

2

Motivation

• It is hard to provide such SLAs today

Want: predictable application behaviour and performance

Need system to provide end-to-end SLAs, e.g.,
• Guaranteed storage bandwidth B
• Guaranteed high IOPS and priority
• Per-application control over decisions along IOs’ path

5

Switch Switch Switch

S-NIC S-NIC

S-NIC NIC S-NIC NIC

VM
Virtual

Machine

vDisk

VM
Virtual

Machine

vDisk

App
OS

App
OS

…

6

Deep IO path with 18+ different layers that are configured
and operate independently and do not understand SLAs

Example: guarantee aggregate bandwidth B for Red
tenant

Challenges in enforcing end-to-end SLAs

• No storage control plane
• No enforcing mechanism along storage data plane
• Aggregate performance SLAs

- Across VMs, files and storage operations

• Want non-performance SLAs: control over IOs’
path

• Want to support unmodified applications and
VMs

7

…

IOFlow architecture

App
OS

App
OS

Controller

High-level SLA

8

IOFlow API

Decouples the data plane (enforcement) from the
control plane (policy logic) IO Packets

...

Queue nQueue 1

Contributions

• Defined and built storage control plane

• Controllable queues in data plane

• Interface between control and data plane (IOFlow

API)

• Built centralized control applications that
demonstrate power of architecture

9

SDS: Storage-specific challenges

Low-level
primitives

Old networks SDN Storage today SDS

End-to-end
identifier

Data plane
queues

Control plane

Storage flows

•Storage “Flow” refers to all IO requests to which an SLA applies

<{VMs}, {File Operations}, {Files}, {Shares}> ---> SLA

• Aggregate, per-operation and per-file SLAs, e.g.,
• <{VM 1-100}, write, *, \\share\db-log}>---> high priority

• <{VM 1-100}, *, *, \\share\db-data}> ---> min 100,000 IOPS

• Non-performance SLAs, e.g., path routing

• <VM 1, *, *, \\share\dataset>---> bypass malware scanner

11

source set destination sets

IOFlow API: programming data plane queues

1. Classification [IO Header -> Queue]

2. Queue servicing [Queue -> <token rate, priority, queue size>]

3. Routing [Queue -> Next-hop]

Malware
scanner

12

Lack of common IO Header for storage traffic

• SLA: <VM 4, *, *, \\share\dataset> --> Bandwidth B

13

V
M

1

V
M

2

V
M

3

Application

V
M

4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Block device
Z: (/device/scsi1)

Server and VHD
\\serverX\AB79.vhd

Volume and file
H:\AB79.vhd

Block device
/device/ssd5

V
M

1

V
M

2

V
M

3

Application

V
M

4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Flow name resolution through controller

• SLA: {VM 4, *, *, //share/dataset} --> Bandwidth B

Controller
SMBc exposes IO Header it

understands:
<VM_SID, //server/file.vhd>

Queuing rule (per-file handle):
<VM4_SID, //serverX/AB79.vhd> --> Q1
Q1.token rate --> B

14

Rate limiting for congestion control

Queue servicing [Queue -> <token rate, priority, queue size>]

• Important for performance SLAs

• Today: no storage congestion control

• Challenging for storage: e.g., how to rate limit two VMs, one
reading, one writing to get equal storage bandwidth?

15

IOs

to
ken

s

Rate limiting on payload bytes does not work

16

VM VM

8KB Writes8KB Reads

Rate limiting on bytes does not work

17

VM VM

8KB Writes8KB Reads

Rate limiting on IOPS does not work

18

VM VM

8KB Writes64KB Reads

Need to rate limit based on cost

Rate limiting based on cost

 Controller constructs empirical cost models based
on device type and workload characteristics

 RAM, SSDs, disks: read/write ratio, request size

 Cost models assigned to each queue
 ConfigureTokenBucket [Queue -> cost model]

 Large request sizes split for pre-emption

19

Recap: Programmable queues on data plane

 Classification [IO Header -> Queue]

 Per-layer metadata exposed to controller

 Controller out of critical path

 Queue servicing [Queue -> <token rate, priority,
queue size>]

 Congestion control based on operation cost

 Routing [Queue -> Next-hop]

How does controller enforce SLA?

20

Distributed, dynamic enforcement

• SLA needs per-VM enforcement
• Need to control the aggregate rate of

VMs 1-4 that reside on different
physical machines

• Static partitioning of bandwidth is
sub-optimal

• <{Red VMs 1-4}, *, * //share/dataset> --> Bandwidth 40 Gbps

21

VMVM
VM

VM
VM

VM
VM VM

40Gbps

Work-conserving solution

• VMs with traffic demand
should be able to send it as
long as the aggregate rate does
not exceed 40 Gbps

• Solution: Max-min fair sharing

22

VMVM
VM

VM
VM

VM
VM VM

Max-min fair sharing

• Well studied problem in networks

 Existing solutions are distributed

 Each VM varies its rate based on congestion

 Converge to max-min sharing

 Drawbacks: complex and requires congestion signal

• But we have a centralized controller

 Converts to simple algorithm at controller

23

Controller-based max-min fair sharing

What does controller do?
• Infers VM demands
• Uses centralized max-min within

a tenant and across tenants
• Sets VM token rates
• Chooses best place to enforce

Controller

24

INPUT:
per-VM demands

OUTPUT:
per-VM allocated token rate

t
s

t = control interval
s = stats sampling interval

Controller decides where to enforce

25

SLA constraints

 Queues where resources shared

 Bandwidth enforced close to source

 Priority enforced end-to-end

Efficiency considerations

 Overhead in data plane ~ # queues

 Important at 40+ Gbps

Minimize # times IO is queued and distribute rate limiting load

VMVM
VM

VM
VM

VM
VM VM

Centralized vs. decentralized control

Centralized controller in SDS allows for simple
algorithms that focus on SLA enforcement and not

on distributed system challenges

Analogous to benefits of centralized control in software-
defined networking (SDN)

26

IOFlow implementation
V

M
1

V
M

2

V
M

3

Application

V
M

4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Controller

27

2 key layers for
VM-to-Storage
performance SLAs

4 other layers
. Scanner driver (routing)
. User-level (routing)

. Network driver

. Guest OS file system

Implemented as filter drivers on top of layers

Evaluation map

• IOFlow’s ability to enforce end-to-end SLAs

• Aggregate bandwidth SLAs

• Priority SLAs and routing application in paper

• Performance of data and control planes

28

Evaluation setup

29

VMVM
VMVM

Switch

VM
VM

VM VM

…

Clients:10 hypervisor servers, 12 VMs each
4 tenants (Red, Green, Yellow, Blue)
30 VMs/tenant, 3 VMs/tenant/server

Storage network:
Mellanox 40Gbps RDMA RoCE full-duplex

1 storage server:
16 CPUs, 2.4GHz (Dell R720)
SMB 3.0 file server protocol
3 types of backend: RAM, SSDs, Disks

Controller: 1 separate server
1 sec control interval (configurable)

Workloads

• 4 Hotmail tenants {Index, Data, Message, Log}

• Used for trace replay on SSDs (see paper)

• IoMeter is parametrized with Hotmail tenant
characteristics (read/write ratio, request size)

30

Enforcing bandwidth SLAs

4 tenants with different storage bandwidth SLAs

Tenants have different workloads

 Red tenant is aggressive: generates more requests/second

Tenant SLA

Red {VM1 – 30} -> Min 800 MB/s

Green {VM31 – 60} -> Min 800 MB/s

Yellow {VM61 – 90} -> Min 2500 MB/s

Blue {VM91 – 120} -> Min 1500 MB/s

31

Things to look for

• Distributed enforcement across 4 competing
tenants

 Aggressive tenant(s) under control

• Dynamic inter-tenant work conservation

 Bandwidth released by idle tenant given to active
tenants

• Dynamic intra-tenant work conservation

 Bandwidth of tenant’s idle VMs given to its active VMs

32

Results

Controller
notices red

tenant’s
performanceTenants’ SLAs

enforced. 120
queues cfg.

33

Inter-tenant
work

conservation

Intra-tenant
work

conservation

Data plane overheads at 40Gbps RDMA

• Negligible in previous experiment. To bring out
worst case varied IO sizes from 512Bytes to 64KB

34

Reasonable overheads for enforcing SLAs

Control plane overheads: network and CPU

35

O
ve

rh
ea

d
s

(M
B

) <0.3% CPU
overhead at

controller

• Controller configures queue rules, receives
statistics and updates token rates every
interval

Before Next time
• Final Project Presentation/Demo

– Due Friday, December 12.

– Presentation and Demo

– Written submission required:
• Report

• Website: index.html that points to report, presentation, and project (e.g.
code)

• Required review and reading for Wednesday, December
3
– Plug into the Supercloud, D. Williams, H. Jamjoom, H. Weatherspoon. IEEE

Internet Computing, Vol. 17, No 2, March/April 2013, pp 28-34.

– http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6365162

• Check piazza: http://piazza.com/cornell/fall2014/cs5413

• Check website for updated schedule

