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Where are we in the semester?

* Qverview and Basics 5

e Data Center Networks
— Basic switching technologies
— Data Center Network Topologies (today and Monday)
— Software Routers (eg. Click, Routebricks, NetMap, Netslice)
— Alternative Switching Technologies
— Data Center Transport

e Data Center Software Networking

— Software Defined networking (overview, control plane, data
plane, NetFGPA)

— Data Center Traffic and Measurements

— Virtualizing Networks
— Middleboxes

* Advanced Topics



Goals for Today

* VirtualWires for Live Migrating Virtual Networkg=>
across Clouds

— D. Williams, H. Jamjoom, Z. Jiang, and H.
Weatherspoon. IBM Tech. Rep. RC25378, April 2013.



Control of cloud networks

e User control of cloud
networks

Enterprise Workloads

M VI VI VM

User Control of Cloud

Efficient Cloud
Networks Resource
(VirtualWire) Utilization

(Overdriver)

Cloud Interoperability
(The Xen-Blanket)
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current clouds lack control over network

* Cloud networks are EESR——
provider-centric e s 0 :
— Control logic that encodes ddptgly §
flow policies is implemented """ i | WM || W™
by provider 1.
— Provider decides if low-level e :
network features (e.g., Virtual Network =
VLANS, IP addresses, etc.) | &

supporf rich network features

are supported
What virtual network abstraction should a cloud provider expose?
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virtualwire

e Key Insight: move control logic to user

* Virtualized equivalents of network Management Tools
components Configure using |~ Use APIs | 5
— Open vswitch, Cisco Nexus 1000V nativeinterfaces § 1o specily | 3
h sl ’ I peerings | a)
NetSim, Click router, etc. —! 3
C_ontrol I__oglc : 6'

WM || WM || Y ||

* Provider just needs to enable H — —
connectivity o
: 0
— Connect/disconnect =
X
: : S
* VirtualWire connectors 1 Network 9
i (G

— Point-to-point layer-2 tunnels support location independent tunnels



Outline

* Motivation
e VirtualWire

— Design
— Implementation

 Evaluation
 Conclusion



Point-to-point layer-2
network tunnels

Endpoints migrated
with virtual network

VXLAN wire format

for packet
encapsulation

components

Implemented in the
kernel for efficiency

CLOUD USER

CLOUD PROVIDER
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VirtualWire connectors / wires

* Connections between endpoints
— E.g. tunnel, VPN, local bridge

* Each hypervisor contains endpoint controller
— Advertises endpoints
— Looks up endpoints
— Sets wire type
— Integrates with VM migration

* Simple interface
— connect/disconnect



VirtualWire connectors / wires

e Types of wires
— Native (bridge)
— Encapsulating (in kernel module)
— Tunneling (Open-VPN based)

» [proc interface for configuring wires

* Integrated with live migration



Connector Implementation

* Connectors are layer-2-in-layer-3 tunnels
— 44 byte UDP header includes 32-bit connector ID

Outer Ethernet
Header
EE Version IHL TOS Total Length
3 Identification Flags Fragment Offset
Time to Live Protocol Header Checksum
Outer Source Address
Outer Destination Address
E % Source Port Dest Port
3 UDP Length UDP Checksum
VirtualWire Connector ID
§ § Inner Destination MAC Address
E_E Inner Destination MAC Address Inner Source MAC Address
& Inner Source MAC Address
Optional Ethertype = C-Tag [802.1Q] Inner.VLAN Tag Information
Original Ethernet Payload




Blanket layer provides hypervisor level /! Xen-Blanket T
features through nested virtualization on “~ S/ (nested) c
third-party clouds / @
/ v Py
Xen-Blanket = %
(non-nested) <
w]
()
l
Third-party cloud
J/ (RackSpace, EC2, etc.)
7
HARDWARE HARDWARE

* Enables cross-provider live migration
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Implementation

Dom U Dom U Dom U
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Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3
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Optimizations

Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3

Endpoint Endpoint

Endpoint Endpoint

Outgoing Outgoing Outgoing
Interface Interface Interface




Optimizations

Xen-Blanket 1 Xen-Blanket 2

Endpoint

Outgoing
Interface

Endpoint

Outgoing
Interface




Optimizations

Xen-Blanket 1




Outline

* Motivation
e VirtualWire

— Design
— Implementation

 Evaluation
 Conclusion



all orange interfaces are on the same

'S =T 1
! Dom U : Dom U Dom 0O layer 2 virtual segment (attached to the
! i Gateway Server same bridge) that spans both clouds,
: : DNS, DHCP, NFS connected through an SSH tunnel.
L VM
1 : R~
| 9]
1 : n
N . | | 1 [ - Dom O Dom U
FW
Xen-Blanket
VM
Our =
Cloud z
()]
1
both domain Os can access the NFS Xen-Blanket
share through the virtual network.

EC2
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* Amazon EC2 and local resources Qs

— EC2 (4XL): 33 ECUs, 23 GB memory, 10 Gbps Ethernet

— Local: 12 cores @ 2.93 GHz, 24 GB memory, 1Gbps
Ethernet

e Xen-blanket for nested virtualization
— Dom 0: 8 vCPUs, 4 GB memory
— PV guests: 4 vCPUs, 8 GB memory

Local NFS server for VM disk images

* netperf to measure throughput latency
— 1400 byte packets



cross-provider live migration

Migrated 2 VMs
and a virtual switch
between Cornell

and EC2

No network
reconfiguration

Downtime as low
as 1.4 seconds
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Outline

* Motivation
e VirtualWire

— Design
— Implementation
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 Conclusion



— physical interface limitations

* Several approaches
— Co-location
— Distributed components

— Evolve virtual network
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Before Next time ‘
&

* Project Interim report RS
— Due Monday, November 24.
— And meet with groups, TA, and professor

* Fractus Upgrade: Should be back online

* Required review and reading for Monday, November 24

— Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service, Making middleboxes someone else's problem: network processing as a
cloud service, J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.
Sekar. ACM SIGCOMM Computer Communication Review (CCR) Volume 42, Issue
4 (August 2012), pages 13-24.

— http://dl.acm.org/citation.cfm?id=2377680
— http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p13.pdf

* Check piazza: http://piazza.com/cornell/fall2014/cs5413
* Check website for updated schedule



functionality from physical devices

— Aka virtualization

* Can place VM anywhere
— Consolidation
— Instantiation
— Migration
— Placement Optimizations



Are all Devices Decoupled

* Today: Split driver model
— Guests don’t need device specific driver
— System portion interfaces with physical devices

o DependenC|eS On Ring3 | DomO Dom U: Guest
hardware —

Kernel User

— Presence of device
(e.g. GPU, FPGA) Ring 0

— Device-related configuration
(e.g. VLAN) Xen

Hardware



Devices Limit Flexibility

* Today: Split driver model
— Dependencies break if VM moves

° NO easy place to plug R|ng3 Dom O Dom U: Guest VM
into hardware driver
— System portion Ring 1
connected in ad-hoc
way Ring 0

Kernel User

Xen

Hardware



backend driver

e Standard interface
between endpoints

e Connected with wires

Dom O

Dom U: Guest VM

Kernel User

Xen

Hardware




