Data Center Virtualization:
VirtualWire

Hakim Weatherspoon

Assistant Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
November 21, 2014

Slides from USENIX Workshop on Hot Topics in Cloud Computing (HotCloud) 2014
presentation and Dan Williams dissertation

Where are we in the semester?

* Qverview and Basics 5

e Data Center Networks
— Basic switching technologies
— Data Center Network Topologies (today and Monday)
— Software Routers (eg. Click, Routebricks, NetMap, Netslice)
— Alternative Switching Technologies
— Data Center Transport

e Data Center Software Networking

— Software Defined networking (overview, control plane, data
plane, NetFGPA)

— Data Center Traffic and Measurements

— Virtualizing Networks
— Middleboxes

* Advanced Topics

Goals for Today

* VirtualWires for Live Migrating Virtual Networkg=>
across Clouds

— D. Williams, H. Jamjoom, Z. Jiang, and H.
Weatherspoon. IBM Tech. Rep. RC25378, April 2013.

Control of cloud networks

e User control of cloud
networks

Enterprise Workloads

M VI VI VM

User Control of Cloud

Efficient Cloud
Networks Resource
(VirtualWire) Utilization

(Overdriver)

Cloud Interoperability
(The Xen-Blanket)

/////////////& 4l

q R R
l) R R R R EN
' R R R R e
I S S TR
I Ii R

Third-Party Clouds

current clouds lack control over network

* Cloud networks are EESR——
provider-centric e s 0 :
— Control logic that encodes ddptgly §
flow policies is implemented """ i | WM || W™
by provider 1.
— Provider decides if low-level e :
network features (e.g., Virtual Network =
VLANS, IP addresses, etc.) | &

supporf rich network features

are supported
What virtual network abstraction should a cloud provider expose?

5

virtualwire

e Key Insight: move control logic to user

* Virtualized equivalents of network Management Tools
components Configure using |~ Use APIs | 5
— Open vswitch, Cisco Nexus 1000V nativeinterfaces § 1o specily | 3
h sl ’ I peerings | a)
NetSim, Click router, etc. —! 3
C_ontrol I__oglc : 6'

WM || WM || Y ||

* Provider just needs to enable H — —
connectivity o
: 0
— Connect/disconnect =
X
: : S
* VirtualWire connectors 1 Network 9
i (G

— Point-to-point layer-2 tunnels support location independent tunnels

Outline

* Motivation
e VirtualWire

— Design
— Implementation

 Evaluation
 Conclusion

Point-to-point layer-2
network tunnels

Endpoints migrated
with virtual network

VXLAN wire format

for packet
encapsulation

components

Implemented in the
kernel for efficiency

CLOUD USER

CLOUD PROVIDER

Physical Machine Physical Machine
Top-of-Rack <Ll
Router Switch Virtual Network
/ Interface
(M
N
—
ETAN
Y e Endpoint
i
Endpoint’, gi Endpoint
Manager ‘ Manager
Physical \Physical Network
Cable Connector ~Interface
Physical (A S — | Physical
Switch Switch

VirtualWire connectors / wires

* Connections between endpoints
— E.g. tunnel, VPN, local bridge

* Each hypervisor contains endpoint controller
— Advertises endpoints
— Looks up endpoints
— Sets wire type
— Integrates with VM migration

* Simple interface
— connect/disconnect

VirtualWire connectors / wires

e Types of wires
— Native (bridge)
— Encapsulating (in kernel module)
— Tunneling (Open-VPN based)

» [proc interface for configuring wires

* Integrated with live migration

Connector Implementation

* Connectors are layer-2-in-layer-3 tunnels
— 44 byte UDP header includes 32-bit connector ID

Outer Ethernet
Header
EE Version IHL TOS Total Length
3 Identification Flags Fragment Offset
Time to Live Protocol Header Checksum
Outer Source Address
Outer Destination Address
E % Source Port Dest Port
3 UDP Length UDP Checksum
VirtualWire Connector ID
§ § Inner Destination MAC Address
E_E Inner Destination MAC Address Inner Source MAC Address
& Inner Source MAC Address
Optional Ethertype = C-Tag [802.1Q] Inner.VLAN Tag Information
Original Ethernet Payload

Blanket layer provides hypervisor level /! Xen-Blanket T
features through nested virtualization on “~ S/ (nested) c
third-party clouds / @
/ v Py
Xen-Blanket = %
(non-nested) <
w]
()
l
Third-party cloud
J/ (RackSpace, EC2, etc.)
7
HARDWARE HARDWARE

* Enables cross-provider live migration

12

Implementation

Dom U Dom U Dom U
Network Component
Server (Switch) Server
Front Front Front Front
pd N\,
e N\,
e AN

r4 Endpoint || Back Back Endpoint r; | Endpoint || Back - Endpoint || Back
i Bridge Bridge i i Bridge i Bridge
Outgoing DomO | | Dom 0 Outgoing Outgoing Dom 0
Interface Interface Interface

Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3
Dom O
| xenbrO | | xenbr0
[[o
Outgoing Interface | | Outgoing Interface S
ethO ethO

PHYSICAL MACHINE 1

PHYSICAL MACHINE 2

d3INMO 43S

|~ ALYVd-QYIHL =) ¢

Optimizations

Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3

Endpoint Endpoint

Endpoint Endpoint

Outgoing Outgoing Outgoing
Interface Interface Interface

Optimizations

Xen-Blanket 1 Xen-Blanket 2

Endpoint

Outgoing
Interface

Endpoint

Outgoing
Interface

Optimizations

Xen-Blanket 1

Outline

* Motivation
e VirtualWire

— Design
— Implementation

 Evaluation
 Conclusion

all orange interfaces are on the same

'S =T 1
! Dom U : Dom U Dom 0O layer 2 virtual segment (attached to the
! i Gateway Server same bridge) that spans both clouds,
: : DNS, DHCP, NFS connected through an SSH tunnel.
L VM
1 : R~
| 9]
1 : n
N . | | 1 [- Dom O Dom U
FW
Xen-Blanket
VM
Our =
Cloud z
()]
1
both domain Os can access the NFS Xen-Blanket
share through the virtual network.

EC2

19

* Amazon EC2 and local resources Qs

— EC2 (4XL): 33 ECUs, 23 GB memory, 10 Gbps Ethernet

— Local: 12 cores @ 2.93 GHz, 24 GB memory, 1Gbps
Ethernet

e Xen-blanket for nested virtualization
— Dom 0: 8 vCPUs, 4 GB memory
— PV guests: 4 vCPUs, 8 GB memory

Local NFS server for VM disk images

* netperf to measure throughput latency
— 1400 byte packets

cross-provider live migration

Migrated 2 VMs
and a virtual switch
between Cornell

and EC2

No network
reconfiguration

Downtime as low
as 1.4 seconds

Throughput (Mbps)

Latency (ms)

1600 T T T
23
1400 | 2 0 S
3 £ss
1200 5 558
1000 -% %E E
goo [£i} gf £ oS g
» o = =hh
600} i g| > S22
k= b=
400 F o o
= =
200 = b
0 = |> HE 1 1 1 1
0 100 200 300 400 500 600 700
Time (s)
10 b i
: @
i) » i) g
s et s o=
17 Sf » @S9
s st & ST
— — — =) _9__ I
1t 5 g 5 SEE
= £ £ EQCC
= =i < S22
= S -~ SR
0-1 1l 1 1 1 ! 1 1 1 1
0 100 200 300 400 500 600 700 8%01 900

Time (s)

Outline

* Motivation
e VirtualWire

— Design
— Implementation

 Evaluation
 Conclusion

— physical interface limitations

* Several approaches
— Co-location
— Distributed components

— Evolve virtual network

23

Before Next time ‘
&

* Project Interim report RS
— Due Monday, November 24.
— And meet with groups, TA, and professor

* Fractus Upgrade: Should be back online

* Required review and reading for Monday, November 24

— Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service, Making middleboxes someone else's problem: network processing as a
cloud service, J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.
Sekar. ACM SIGCOMM Computer Communication Review (CCR) Volume 42, Issue
4 (August 2012), pages 13-24.

— http://dl.acm.org/citation.cfm?id=2377680
— http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p13.pdf

* Check piazza: http://piazza.com/cornell/fall2014/cs5413
* Check website for updated schedule

functionality from physical devices

— Aka virtualization

* Can place VM anywhere
— Consolidation
— Instantiation
— Migration
— Placement Optimizations

Are all Devices Decoupled

* Today: Split driver model
— Guests don’t need device specific driver
— System portion interfaces with physical devices

o DependenC|eS On Ring3 | DomO Dom U: Guest
hardware —

Kernel User

— Presence of device
(e.g. GPU, FPGA) Ring 0

— Device-related configuration
(e.g. VLAN) Xen

Hardware

Devices Limit Flexibility

* Today: Split driver model
— Dependencies break if VM moves

° NO easy place to plug R|ng3 Dom O Dom U: Guest VM
into hardware driver
— System portion Ring 1
connected in ad-hoc
way Ring 0

Kernel User

Xen

Hardware

backend driver

e Standard interface
between endpoints

e Connected with wires

Dom O

Dom U: Guest VM

Kernel User

Xen

Hardware

