

Data Center Virtualization: Xen and Xen-blanket

Hakim Weatherspoon

Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
November 17, 2014

Slides from ACM European Conference on Computer Systems 2012 presentation of "The Xen-Blanket: Virtualize Once, Run Everywhere" and Dan Williams dissertation

Goals for Today

- The Xen-Blanket: Virtualize Once, Run Everywhere
 - D. Williams, H. Jamjoom, and H. Weatherspoon. ACM European Conference on Computer Systems (EuroSys), April 2012, pages 113-126..

Background & motivation

• Infrastructure as a Service (IaaS) clouds

research challenges

- Lack of interoperability between clouds
 - How can cloud user homogenize clouds?
- Lack of control in cloud networks
 - What cloud network abstraction enables enterprise workload to run without modification?
- Lack of efficient cloud resource utilization
 - How can cloud users exploit oversubscription in the cloud while handling overload?

Xen-Blanket

A second-layer hypervisor

Xen-Blanket

contributions towards superclouds

- Cloud interoperability
 - Enable cloud user to homogenize clouds
 - The Xen-Blanket

contributions towards superclouds

- Cloud interoperability
- User control of cloud networks
 - Enable cloud user to implement network control logic
 - VirtualWire

contributions towards superclouds

- Cloud interoperability
- User control of cloud networks
- Efficient cloud resource utilization
 - Enable cloud user to oversubscribe resources and handle overload
 - Overdriver

roadmap: towards superclouds

- Cloud interoperability
- User control of cloud networks
- Efficient cloud resource utilization

- Related work
- Future work
- Conclusion

Clouds are not interoperable

- Image format not yet standard
 - AMI, Open Virtualization Format (OVF)
- Paravirtualized device interfaces vary
 - virtio, Xen
- Hypervisor-level services not standard
 - Autoscale, VM migration, CPU bursting

Need *homogenization* (consistent interfaces, services across clouds)

provider-centric homogenization

 Rely on support from provider

VM 1

INTERFACE

Cloud A

VM 2

VM 3

VM 4

INTERFACE

Cloud B

 May take years, if ever (e.g., standardization)

"Least common denominator" functionality

Consistent
VM/Device/Hypervisor
Interfaces

Consistent Hypervisorlevel Services

user-centric homogenization

 No special support from provider VM 1

VM 2

VM 3

VM 4

Can be done today

 Custom, userspecific functionality

Consistent Hypervisorlevel Services

nested virtualization approaches

Require support by bottom level hypervisor

No modifications to top-level hypervisor

The Turtles Project (OSDI'10)

(provider-centric)

No support from bottom level hypervisor

Modify top-level hypervisor

The Xen-Blanket

(user-centric)

the xen-blanket

Assumption:

Existing clouds provide full virtualization (HVM)

Future work:

 Xen-Blanket in paravirtualized guest

No support for nested virtualization

Hardware

without hypervisor support

- No virtualization hardware exposed to second layer
 - Can use paravirtualization or binary translation
 - We use paravirtualization (Xen)
- Heterogeneous device interfaces
 - Create set of Blanket drivers for each interface
 - We have built drivers for Xen and KVM (virtio)

PV device I/O

- Paravirtualized device I/O essential for performance
- Domain 0 hides physical device details from guests

PV-on-HVM

- HVM guest still needs
 PV device I/O
- Platform PCI Driver makes Xen internals look like PCI device
- Physical device details still hidden from guests

blanket drivers

- Physical device details are hidden from entire Xen-Blanket instance
- Blanket Frontend
 Driver interfaces with
 provider-specific
 device interface
 - like PV-on-HVM
- Provider-specific device interface details are hidden from second-layer guests

technical details

- Address translation
 - Virtual addresses are two translations from machine addresses (needed for DMA)
- Hypercall assistance
 - Communication between frontend blanket driver and backend driver
 - vmcall must be issued from ring 0
 - Most hypercalls are passthrough

Many more details in thesis

overhead evaluation setup

Used up to 2 physical hosts (six-core 2.93 GHz Intel Xeon X5670 processors, 24 GB of memory, four 1 TB disks, and 1 Gbps link)

Paravirt Fully vir	PV-Linux		
	Linux	PV-Linux	Xen-Blanket
Linux	Xen	Xen	Xen
Hardware	Hardware	Hardware	Hardware
(a) Native	(b) HVM	(c) PV	(d) Xen-Blanket

Imbench microbenchmarks

	Native (μs)	HVM (μs)	PV (μs)	Xen-Blanket (μs)
Null Call	0.19	0.21	0.36	0.36
Fork Proc	67	86	220	258
Ctxt switch (2p/64K)	0.45	0.66	3.18	3.46
Page fault	0.56	0.99	2.00	2.10

Compare Xen-Blanket to PV

blanket driver overhead

 Two VMs on two physical hosts using netperf

- Can receive at line speed on 1Gbps link
- Within 15% CPU utilization of single layer

kernbench

- Up to 68% overhead on kernbench
 - APIC emulation causes many vmexits

user-defined oversubscription

Туре	CPU (ECUs)	Memory (GB)	Disk (GB)	Price (\$/hr)
Small	1	1.7	160	0.085
Cluster 4XL	33.5	23	1690	1.60
Factor	33.5x	13.5x	10x	18.8x

Resources do not all scale the same as price Opportunity to exploit CPU scaling

kernbench revisited

- kernbench kernel compile benchmark
- Rent one 4XL EC2 instance
- Use Xen-Blanket to partition it 40 ways
- All instances (on average) finished the same time as EC2 small instance
- 47% price reduction per VM per hour

cloud interoperability

The Xen-Blanket

- User-centric homogenization
- Nested virtualization without support from underlying hypervisor
- Runs on today's clouds (e.g., Amazon EC2)
- Download the code:
 - http://code.google.com/p/xen-blanket/

New opportunities

• *performance*: user-defined oversubscription

Before Next time

- Project Interim report
 - Due Monday, November 24.
 - And meet with groups, TA, and professor
- Fractus Upgrade: Should be back online
- Required review and reading for Wednesday, November 19
 - Extending networking into the virtualization layer, B. Pfaff, J. Pettit, T.
 Koponen, K. Amidon, M. Casado, S. Shenker. ACM SIGCOMM Workshop on Hot Topics in Networking (HotNets), October 2009.
 - http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009final143.pdf
- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule