

Alternative Switching Technologies: Optical Circuit Switches

Hakim Weatherspoon

Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
October 22, 2014

Slides from the "On the Feasibility of Completely Wireless Datacenters" at the ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), October 2012.

Goals for Today

- On the Feasibility of Completely Wireless Datacenters
 - J. Y. Shin, E. G. Sirer, H. Weatherspoon, and D. Kirovski, IEEE/ACM Transactions on Networking (ToN), Volume 21, Issue 5 (October 2013), pages 1666-1680.

Current solutions for increasing data center network bandwidth

FatTree

1. Hard to construct

BCube

2. Hard to expand

An alternative: hybrid packet/circuit switched data center network

Goal of this work:

- Feasibility: software design that enables efficient use of optical circuits
- Applicability: application performance over a hybrid network

Optical circuit switching v.s. Electrical packet switching

Technology: Optical Circuit Switch

Wavelength Division Multiplexing

Optical circuit switching is promising despite slow switching time

[IMC09][HotNets09]: "Only a few ToRs are hot and most their traffic goes to a few other ToRs.

[WREN09]: "...we find that traffic at the five edge switches exhibit an ON/OFF pattern..."

Full bisection bandwidth at packet granularity may not be necessary

Hybrid packet/circuit switched network architecture

- Optical paths are provisioned rack-to-rack
 - A simple and cost-effective choice
 - Aggregate traffic on per-rack basis to better utilize optical circuits

Design requirements

Control plane:

- Traffic demand estimation
- Optical circuit configuration

Data plane:

- Dynamic traffic de-multiplexing
- Optimizing circuit utilization (optional)

c-Through (a specific design)

c-Through - traffic demand estimation and traffic batching

- 1. Transparent to applications.
 - 2. Packets are buffered per-flow to avoid HOL blocking.

- Accomplish two requirements:
 - Traffic demand estimation
 - Pre-batch data to improve optical circuit utilization

c-Through - optical circuit configuration

Use Edmonds' algorithm to compute optimal configuration

Many ways to reduce the control traffic overhead

c-Through - traffic de-multiplexing

- VLAN-based network isolation:
 - No need to modify switches
 - Avoid the instability caused by circuit reconfiguration

- Traffic control on hosts:
 - Controller informs hosts about the circuit configuration
 - End-hosts tag packets accordingly

Testbed setup

- 16 servers with 1Gbps NICs
- Emulate a hybrid network on 48-port Ethernet switch

Ethernet switch

- Optical circuit emulation
 - Optical paths are available only when hosts are notified
 - During reconfiguration, no host can use optical paths
 - 10 ms reconfiguration delay

Emulated optical circuit switch

Evaluation

- Basic system performance:
 - Can TCP exploit dynamic bandwidth quickly?
 - Does traffic control on servers bring significant overhead?
 - Does buffering unfairly increase delay of small flows?
- Application performance:
 - Bulk transfer (VM migration)?
 - Loosely synchronized all-to-all communication (MapReduce)?
 - Tightly synchronized all-to-all communication (MPI-FFT) ?

TCP can exploit dynamic bandwidth quickly

MapReduce Overview

MapReduce sort 10GB random data

c-Through varying socket buffer size limit (reconfiguration interval: 1 sec)

MapReduce sort 10GB random data

c-Through varying reconfiguration interval (socket buffer size limit: 100MB)

Yahoo Gridmix benchmark

- 3 runs of 100 mixed jobs such as web query, web scan and sorting
- 200GB of uncompressed data, 50 GB of compressed data

Summary

- Hybrid packet/circuit switched data center network
 - c-Through demonstrates its feasibility
 - Good performance even for applications with all to all traffic
- Future directions to explore:
 - The scaling property of hybrid data center networks
 - Making applications circuit aware
 - Power efficient data centers with optical circuits

Related Work

	Link Technology	Modifications Required	Working Prototype
Helios (SIGCOMM '10)	Optics w/ WDM 10G-180G (CWDM) 10G-400G (DWDM)	Switch Software	Glimmerglass, Fulcrum
c-Through (SIGCOMM '10)	Optics (10G)	Host OS	Emulation
Flyways (SIGCOMM '11, HotNets '09)	Wireless (1G, 10m)	Unspecified	
IBM System-S (GLOBECOM '09)	Optics (10G)	Host Application; Specific to Stream Processing	Calient, Nortel
HPC (SC '05)	Optics (10G)	Host NIC Hardware	

Before Next time

- Project Interim report
 - Due Monday, October 27.
 - And meet with groups, TA, and professor
- Lab3 Packet filter/sniffer
 - Due tomorrow, Tuesday, October 21.
- Lab1/2 redux due Friday, October 24
- Fractus Upgrade: SAVE ALL YOUR DATA
 - Fractus will be upgraded from October 28th to 30th
 - Can use Red Cloud during upgrade period, then switch back to Fractus
- Required review and reading for Wednesday, October 22
 - "On the Feasibility of Completely Wireless Datacenters," J. Y. Shin, E. G. Sirer, H. Weatherspoon, and D. Kirovski, IEEE/ACM Transactions on Networking (ToN), Volume 21, Issue 5 (October 2013), pages 1666-1680.
- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule

