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Goals for Today
• NetSlices: Scalable Multi-Core Packet Processing in 

User-Space
– T. Marian, K. S. Lee, and H. Weatherspoon. ACM/IEEE 

Symposium on Architectures for Networking and 
Communications Systems (ANCS), October 2012, pages 
27-38.



Packet Processors
• Essential for evolving networks

– Sophisticated functionality
– Complex performance enhancement protocols
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• Essential for evolving networks

– Sophisticated functionality
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• Challenges: High-performance and flexibility
– 10GE and beyond
– Tradeoffs



Software Packet Processors

• Low-level (kernel) vs. High-level (userspace)

• Parallelism in userspace: Four major difficulties
– Overheads & Contention
– Kernel network stack
– Lack of control over hardware resources
– Portability



Overheads & Contention

• Cache coherence
• Memory Wall 
• Slow cores vs. Fast NICs
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Kernel network stack & HW control

• Raw socket: all traffic from all NICs to user-space
• Too general, hence complex network stack
• Hardware and software are loosely coupled
• Applications have no control over resources
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Portability
• Hardware dependencies
• Kernel and device driver modifications

– Zero-copy
– Kernel bypass



Outline
• Difficulties in building packet processors
• NetSlice
• Evaluation
• Discussions
• Conclusion



NetSlice
• Give power to the application

– Overheads & Contention
– Lack of control over hardware resources

• Spatial partitioning exploiting NUMA architecture

– Kernel network stack
• Streamlined path for packets

– Portability
• No zero-copy, kernel & device driver modifications



NetSlice Spatial Partitioning

• Independent (parallel) execution contexts
– Split each Network Interface Controller (NIC)

• One NIC queue per NIC per context

– Group and split the CPU cores
– Implicit resources (bus and memory bandwidth)

Temporal partitioning
(time-sharing)

Spatial partitioning
(exclusive-access)



NetSlice Spatial Partitioning Example

• 2x quad core Intel Xeon X5570 (Nehalem)
– Two simultaneous hyperthreads – OS sees 16 CPUs  
– Non Uniform Memory Access (NUMA)

• QuickPath point-to-point interconnect

– Shared L3 cache



Heavyweight
Network 

Stack

Streamlined Path for Packets

• Inefficient conventional network stack
– One network stack “to rule them all” 
– Performs too many memory accesses
– Pollutes cache, context switches, synchronization, 

system calls, blocking API



Portability
• No zero-copy

– Tradeoffs between portability and performance
– NetSlices achieves both

• No hardware dependency

• A run-time loadable kernel module 



NetSlice API

• Expresses fine-grained hardware control
• Flexible: based on ioctl
• Easy: open, read, write, close

1:  #include "netslice.h"
2: 
3: structnetslice_rw_multi {
4:   int flags;
5: } rw_multi;
6:
7: structnetslice_cpu_mask {
8:   cpu_set_tk_peer, u_peer;
9: } mask;
10:
11: fd = open("/dev/netslice-1", O_RDWR);
12:
13: rw_multi.flags = MULTI_READ | MULTI_WRITE;
14: ioctl(fd, NETSLICE_RW_MULTI_SET, &rw_multi);
15: ioctl(fd, NETSLICE_CPUMASK_GET, &mask);
16: sched_setaffinity(getpid(), sizeof(cpu_set_t), 
17:   &mask.u_peer);
18

19: for (;;) {
20:   ssize_tcnt, wcnt = 0;
21:   if ((cnt = read(fd, iov, IOVS)) < 0)
22:       EXIT_FAIL_MSG("read");
23:
24:   for (i = 0; i<cnt; i++)
25:       /* iov_rlen marks bytes read */
26:       scan_pkg(iov[i].iov_base, iov[i].iov_rlen);
27:   do {
28:       size_twr_iovs;
29:       /* write iov_rlen bytes */
30:       wr_iovs = write(fd, &iov[wcnt], cnt-wcnt);
31:       if (wr_iovs< 0)
32:           EXIT_FAIL_MSG("write");
33:       wcnt += wr_iovs;
34:   } while (wcnt<cnt);
35: }



NetSlice Evaluation

• Compare against state-of-the-art
– RouteBricks in-kernel, Click & pcap-mmap user-space

• Additional baseline scenario
– All traffic through single NIC queue (receive-livelock)

• What is the basic forwarding performance?
– How efficient is the streamlining of one NetSlice?

• How is NetSlice scaling with the number of cores?



Experimental Setup

• R710 packet processors 
– dual socket quad core 2.93GHz Xeon X5570 (Nehalem)
– 8MB of shared L3 cache and 12GB of RAM

• 6GB connected to each of the two CPU sockets
• Two Myri-10G NICs

• R900 client end-hosts
– four socket 2.40GHz Xeon E7330 (Penryn)
– 6MB of L2 cache and 32GB of RAM



Simple Packet Routing

• End-to-end throughput, MTU (1500 byte) packets
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Linear Scaling with CPUs

• IPsec with 128 bit key—typically used by VPN
– AES encryption in Cipher-block Chaining mode
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Outline
• Difficulties in building packet processors
• Netslice
• Evaluation
• Discussions
• Conclusion



Software Packet Processors

• Can support 10GE and more at line-speed
– Batching

• Hardware, device driver, cross-domain batching

– Hardware support
• Multi-queue, multi-core, NUMA , GPU

– Removing IRQ overhead
– Removing memory overhead

• Including zero-copy

– Bypassing kernel network stack



Software Packet Processors

Batching Parallelism Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User
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Batching Parallelism Zero-Copy Portability Domain
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Software Packet Processors

• Optimized for RX path only



Software Packet Processors
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Discussions
• 40G and beyond

– DPI, FEC, DEDUP, …

• Deterministic RSS

• Small packets



Conclusion

• NetSlices: A new abstraction 
– OS support to build packet processing applications
– Harness implicit parallelism of modern hardware to scale
– Highly portable

• Webpage: http://netslice.cs.cornell.edu

http://netslice.cs.cornell.edu/


Before Next time
• Project Progress

– Need to setup environment as soon as possible
– And meet with groups, TA, and professor

• Lab3 – Packet filter/sniffer
– Due Thursday, October 16
– Use Fractus instead of Red Cloud 

• Required review and reading for Friday, October 15
– “NetSlices: Scalable Multi-Core Packet Processing in User-Space”, T. Marian, K. S. 

Lee, and H. Weatherspoon. ACM/IEEE Symposium on Architectures for 
Networking and Communications Systems (ANCS), October 2012, pages 27-38.

– http://dl.acm.org/citation.cfm?id=2396563
– http://fireless.cs.cornell.edu/publications/netslice.pdf

• Check piazza: http://piazza.com/cornell/fall2014/cs5413
• Check website for updated schedule
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