
Software Routers: NetSlice

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
October 15, 2014

Slides from Ki Suh Lee’s presentation at the ACM/IEEE Symposium on Architectures for
Networking and Communication Systems (ANCS), October 2012.

Goals for Today
• NetSlices: Scalable Multi-Core Packet Processing in

User-Space
– T. Marian, K. S. Lee, and H. Weatherspoon. ACM/IEEE

Symposium on Architectures for Networking and
Communications Systems (ANCS), October 2012, pages
27-38.

Packet Processors
• Essential for evolving networks

– Sophisticated functionality
– Complex performance enhancement protocols

Packet Processors
• Essential for evolving networks

– Sophisticated functionality
– Complex performance enhancement protocols

• Challenges: High-performance and flexibility
– 10GE and beyond
– Tradeoffs

Software Packet Processors

• Low-level (kernel) vs. High-level (userspace)

• Parallelism in userspace: Four major difficulties
– Overheads & Contention
– Kernel network stack
– Lack of control over hardware resources
– Portability

Overheads & Contention

• Cache coherence
• Memory Wall
• Slow cores vs. Fast NICs

Memory

CPU

Memory

NIC

Kernel network stack & HW control

• Raw socket: all traffic from all NICs to user-space
• Too general, hence complex network stack
• Hardware and software are loosely coupled
• Applications have no control over resources

Network
Stack

Application

Raw socket

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Application

ApplicationApplication

Application

Application

Application
Application

Application
Network

Stack

Portability
• Hardware dependencies
• Kernel and device driver modifications

– Zero-copy
– Kernel bypass

Outline
• Difficulties in building packet processors
• NetSlice
• Evaluation
• Discussions
• Conclusion

NetSlice
• Give power to the application

– Overheads & Contention
– Lack of control over hardware resources

• Spatial partitioning exploiting NUMA architecture

– Kernel network stack
• Streamlined path for packets

– Portability
• No zero-copy, kernel & device driver modifications

NetSlice Spatial Partitioning

• Independent (parallel) execution contexts
– Split each Network Interface Controller (NIC)

• One NIC queue per NIC per context

– Group and split the CPU cores
– Implicit resources (bus and memory bandwidth)

Temporal partitioning
(time-sharing)

Spatial partitioning
(exclusive-access)

NetSlice Spatial Partitioning Example

• 2x quad core Intel Xeon X5570 (Nehalem)
– Two simultaneous hyperthreads – OS sees 16 CPUs
– Non Uniform Memory Access (NUMA)

• QuickPath point-to-point interconnect

– Shared L3 cache

Heavyweight
Network

Stack

Streamlined Path for Packets

• Inefficient conventional network stack
– One network stack “to rule them all”
– Performs too many memory accesses
– Pollutes cache, context switches, synchronization,

system calls, blocking API

Portability
• No zero-copy

– Tradeoffs between portability and performance
– NetSlices achieves both

• No hardware dependency

• A run-time loadable kernel module

NetSlice API

• Expresses fine-grained hardware control
• Flexible: based on ioctl
• Easy: open, read, write, close

1: #include "netslice.h"
2:
3: structnetslice_rw_multi {
4: int flags;
5: } rw_multi;
6:
7: structnetslice_cpu_mask {
8: cpu_set_tk_peer, u_peer;
9: } mask;
10:
11: fd = open("/dev/netslice-1", O_RDWR);
12:
13: rw_multi.flags = MULTI_READ | MULTI_WRITE;
14: ioctl(fd, NETSLICE_RW_MULTI_SET, &rw_multi);
15: ioctl(fd, NETSLICE_CPUMASK_GET, &mask);
16: sched_setaffinity(getpid(), sizeof(cpu_set_t),
17: &mask.u_peer);
18

19: for (;;) {
20: ssize_tcnt, wcnt = 0;
21: if ((cnt = read(fd, iov, IOVS)) < 0)
22: EXIT_FAIL_MSG("read");
23:
24: for (i = 0; i<cnt; i++)
25: /* iov_rlen marks bytes read */
26: scan_pkg(iov[i].iov_base, iov[i].iov_rlen);
27: do {
28: size_twr_iovs;
29: /* write iov_rlen bytes */
30: wr_iovs = write(fd, &iov[wcnt], cnt-wcnt);
31: if (wr_iovs< 0)
32: EXIT_FAIL_MSG("write");
33: wcnt += wr_iovs;
34: } while (wcnt<cnt);
35: }

NetSlice Evaluation

• Compare against state-of-the-art
– RouteBricks in-kernel, Click & pcap-mmap user-space

• Additional baseline scenario
– All traffic through single NIC queue (receive-livelock)

• What is the basic forwarding performance?
– How efficient is the streamlining of one NetSlice?

• How is NetSlice scaling with the number of cores?

Experimental Setup

• R710 packet processors
– dual socket quad core 2.93GHz Xeon X5570 (Nehalem)
– 8MB of shared L3 cache and 12GB of RAM

• 6GB connected to each of the two CPU sockets
• Two Myri-10G NICs

• R900 client end-hosts
– four socket 2.40GHz Xeon E7330 (Penryn)
– 6MB of L2 cache and 32GB of RAM

Simple Packet Routing

• End-to-end throughput, MTU (1500 byte) packets

9.7 9.7 9.7

2.3 2.3

7.6 7.5

5.6

0

2000

4000

6000

8000

10000

12000

kernel RouteBricks NetSlice pcap pcap-mmap Click user-
space

Th
ro

ug
hp

ut
 (M

bp
s)

best configuration
receive-livelock

1/11 of
NetSlice

74% of
kernel

Linear Scaling with CPUs

• IPsec with 128 bit key—typically used by VPN
– AES encryption in Cipher-block Chaining mode

9.2
8.5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

bp
s)

of CPUs used

RouteBricks

NetSlice

pcap

pcap-mmap

Click user-space

Outline
• Difficulties in building packet processors
• Netslice
• Evaluation
• Discussions
• Conclusion

Software Packet Processors

• Can support 10GE and more at line-speed
– Batching

• Hardware, device driver, cross-domain batching

– Hardware support
• Multi-queue, multi-core, NUMA , GPU

– Removing IRQ overhead
– Removing memory overhead

• Including zero-copy

– Bypassing kernel network stack

Software Packet Processors

Batching Parallelism Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Software Packet Processors

Batching Multi-queue Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Software Packet Processors

Batching Multi-queue Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Software Packet Processors

Batching Multi-queue Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Batching Parallelism Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Software Packet Processors

Batching Parallelism Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Software Packet Processors

• Optimized for RX path only

Software Packet Processors

Batching Parallelism Zero-Copy Portability Domain

Raw socket User

RouteBricks Kernel

PacketShader User

PF_RING User

netmap User

Kernel-bypass User

NetSlice User

Discussions
• 40G and beyond

– DPI, FEC, DEDUP, …

• Deterministic RSS

• Small packets

Conclusion

• NetSlices: A new abstraction
– OS support to build packet processing applications
– Harness implicit parallelism of modern hardware to scale
– Highly portable

• Webpage: http://netslice.cs.cornell.edu

http://netslice.cs.cornell.edu/

Before Next time
• Project Progress

– Need to setup environment as soon as possible
– And meet with groups, TA, and professor

• Lab3 – Packet filter/sniffer
– Due Thursday, October 16
– Use Fractus instead of Red Cloud

• Required review and reading for Friday, October 15
– “NetSlices: Scalable Multi-Core Packet Processing in User-Space”, T. Marian, K. S.

Lee, and H. Weatherspoon. ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), October 2012, pages 27-38.

– http://dl.acm.org/citation.cfm?id=2396563
– http://fireless.cs.cornell.edu/publications/netslice.pdf

• Check piazza: http://piazza.com/cornell/fall2014/cs5413
• Check website for updated schedule

	Software Routers: NetSlice
	Goals for Today
	Packet Processors
	Packet Processors
	Software Packet Processors
	Overheads & Contention
	Kernel network stack & HW control
	Portability
	Outline
	NetSlice
	NetSlice Spatial Partitioning
	NetSlice Spatial Partitioning Example
	Streamlined Path for Packets
	Portability
	NetSlice API
	NetSlice Evaluation
	Experimental Setup
	Simple Packet Routing
	Linear Scaling with CPUs
	Outline
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Software Packet Processors
	Discussions
	Conclusion
	Before Next time

