

Data Center Network Topologies: A Guided Tour through Data Center Networking

Hakim Weatherspoon

Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking September 17, 2014

A Guided Tour Through Datacenter Networking

 D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.

Authors

- Bob Felderman
 - Princeton and UCLA
 - Currently a Principle Engineer at Google
 - Founded Myricom
 - Myricom pioneered some kernel bypass approaches
 - Used in cluster computing due to low latency and high performance
 - Also, founded Precision IO
- Dennis Abts
 - PhD from U. of Minnesota
 - Currently a member of Technical Staff at Google
 - System architecture and next-gen large scale clusters
 - research interests include scalable coherence protocols, memory consistency models, interconnection networks, fault tolerant computing and robust system design
 - Sr. Principal Engineer and System Architect for Cray Inc

- A Guided Tour Through Datacenter Networking
 - D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.
- Background: Principles and central ideas of data center networks
- Data Center Traffic
- Data Center Network Architecture
- Network Performance
 - Flow Control
 - Network Stack
- Scalable, Manageable, and Flexible
- Reliable and Available

- High Performance Computing (HPC)
 - Expensive and highly tuned
 - High bandwidth
 - Low latency
 - Fine-grained
 - E.g. HPC Application like scientific computing and financial enterprise systems

- Ethernet networks
 - Cheap and general (COTS; commodity off the shelf)
 - Increasing bandwidth (1GbE, 10GbE, 40GbE, 100GbE)
 - E.g. 42% of Top500 use Ethernet in 2012 (2% in 2002)
 - E.g. Web and cloud applications

- Modern Data Center
 - 10s to 100s of thousands of hosts
 - Each host many processing cores, memory, network interface, and local storage (HDD and/or SDD)
- Clusters
 - 10s of racks with 10s of servers in each rack
 - Homogeneous
 - Individual request may contact many clusters
 - Performance based on slowest response
 - Performance of Remote memory vs local disk
 - Network and resp variance congestion can reduce performance
 - Overprovisioning may be too expensive
 - QoS (quality of service): Implemented via NIC with flow classification and priorities

- Modern Data Center
 - 10s to 100s of thousands of hosts
 - Each host many processing cores, memory, network interface, and local storage (HDD and/or SDD)
- Clusters
 - 10s of racks with 10s of servers in each rack

- A Guided Tour Through Datacenter Networking
 - D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.
- Background: Principles and central ideas of data center networks
- Data Center Traffic
- Data Center Network Architecture
- Network Performance
 - Flow Control
 - Network Stack
- Scalable, Manageable, and Flexible
- Reliable and Available

Data Center Traffic

Bimodal: Elephant and Mice

- Average the same by variance is significant
- Mice
 - Short lived
 - Most flows
- Elephant
 - Long lived and bursty
 - Less than 1% of flows
 - Performance impact is significant
 - Lead to temporary congestion on a shared bottleneck link
 - Oversubscription: Hierarchical datacenter topology
 - Inter-rack communication less orchestrated than intra-rack

Inside a 40-ft Microsoft container, Chicago data center

Α

- receives external client requests
- directs workload within data center

- How to identify hosts
 - Endpoint identifiers (Local Area IP address)
 - Statically assigned identifiers or DHCP
- Limitations of Layer 2 and 3 routing
 - ARP (broadcasts)
 - Switches participate in spanning tree protocols (STP) or transparent interconnect of lots of links (TRILL)
 - 64k entries: limitation of packet-forwarding tables

Limitations

- Topology:
 - 2 layers: 5K to 8K hosts
 - 3 layer: >25K hosts
 - Switches:
 - Leaves: have N GigE ports (48-288) + N 10 GigE uplinks to one or more layers of network elements
 - Higher levels: N 10 GigE ports (32-128)

• Multi-path Routing:

- Ex. ECMP
 - without it, the largest cluster = 1,280 nodes
 - $\circ\,$ Performs static load splitting among flows
 - $\circ\,$ Lead to oversubscription for simple comm. patterns
 - Routing table entries grows multiplicatively with number of paths, cost ++, lookup latency ++

Issues with Traditional Data Center Topology

• Oversubscription:

- Ratio of the worst-case achievable aggregate bandwidth among the end hosts to the total bisection bandwidth of a particular communication topology
- Lower the total cost of the design
- Typical designs: factor of 2:5:1 (400 Mbps)to 8:1(125 Mbps)

• Cost:

- Edge: \$7,000 for each 48-port GigE switch
- Aggregation and core: \$700,000 for 128-port 10GigE switches
- Cabling costs are not considered!

FatTree overcomes limitations

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

- A Guided Tour Through Datacenter Networking
 - D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.
- Background: Principles and central ideas of data center networks
- Data Center Traffic
- Data Center Network Architecture
- Network Performance
 - Flow Control
 - Network Stack
- Scalable, Manageable, and Flexible
- Reliable and Available

Network Performance

- Flow control
 - L1: Propagation delay
 - L2/3: Buffering
 - Stable vs unstable networks
 - L4: end-to-end flow control—TCP
- End-host Network Stack performance
 - Kernel (OS) bypass
 - Zero-copy
 - Limitations: Interrupt Coalescing
 - What about virtualization?
 - Multi-queue NICs

- A Guided Tour Through Datacenter Networking
 - D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.
- Background: Principles and central ideas of data center networks
- Data Center Traffic
- Data Center Network Architecture
- Network Performance
 - Flow Control
 - Network Stack
- Scalable, Manageable, and Flexible
- Reliable and Available

Perspective

Data Center Networks have unique requirements

 However, network stack remains intact, but innovation at individual layers: (L1 – optical, L2/L3 – topologies, L4 – TCP (DCTCP), L5 – sockets)

Before Next time

- Project Proposal
 - due this Friday, Sept 19
 - Meet with groups, TA, and professor
- Lab2
 - Multi threaded TCP proxy
 - CHANGE: Due this Friday, Sept 22

• Required review and reading

- "A Scalable, Commodity Data Center Network Architecture," M. Al-Fares, A.
 Loukissas, A. Vahdat . ACM SIGCOMM Computer Communication Review, Volume 38, Issue 4 (October 2008), pages 63-74.
- http://dl.acm.org/citation.cfm?id=1402967
- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule

