

Data Center Networks and Basic Switching Technologies

Hakim Weatherspoon

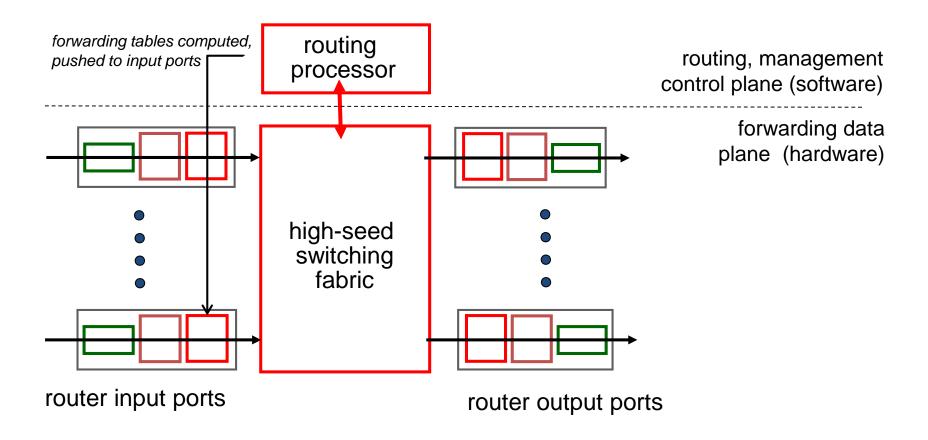
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking September 15, 2014

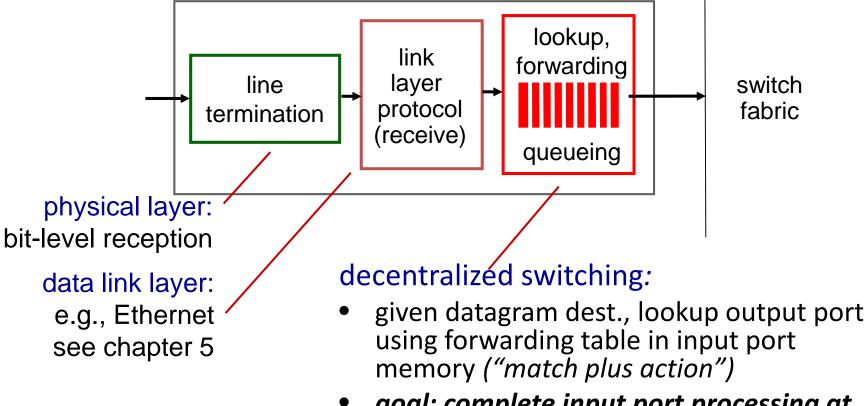
Slides used and adapted judiciously from Computer Networking, A Top-Down Approach

Where are we in the semester?

- Overview and Basics
- Data Center Networks
 - Basic switching technologies (today)
 - Data Center Network Topologies
 - Software Routers (eg. Click, Routebricks, NetMap, Netslice)
 - Alternative Switching Technologies
 - Data Center Transport
- Data Center Software Networking
 - Software Defined networking (overview, control plane, data plane, NetFGPA)
 - Data Center Traffic and Measurements
 - Virtualizing Networks
 - Middleboxes
- Advanced Topics


Goals for Today

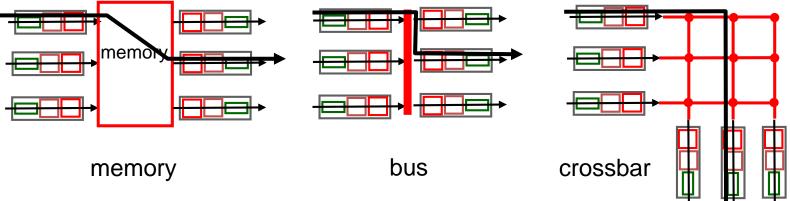
- Basic Switching Technologies/Router Architecture Overview
 - See Section 4.3 in book
- A 50-Gb/s IP Router
 - Craig Partridge, Senior Member, Philip P. Carvey, Isidro Castineyra, Tom Clarke, John Rokosz, Joshua Seeger, Michael Sollins, Steve Starch, Benjamin Tober, Gregory D. Troxel, David Waitzman, Scott Winterble. *IEEE/ACM Transactions on Networking (ToN)*, Volume 6, Issue 3 (June 1998), pages 237-248.



two key router functions:

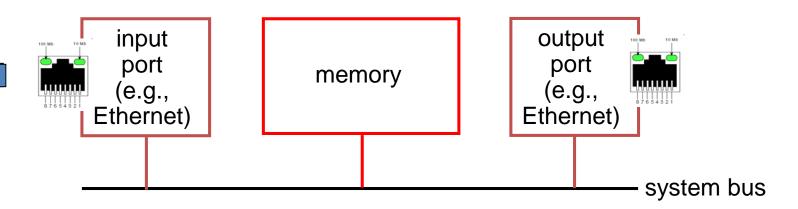
- run routing algorithms/protocol (e.g. RIP, OSPF, BGP)
- *forwarding* datagrams from incoming to outgoing link

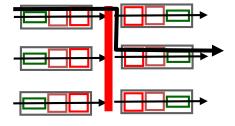
Input Port Functions



- goal: complete input port processing at 'line speed'
- *queuing*: if datagrams arrive faster than forwarding rate into switch fabric

Switching Fabrics

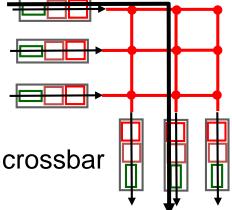

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transferred from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

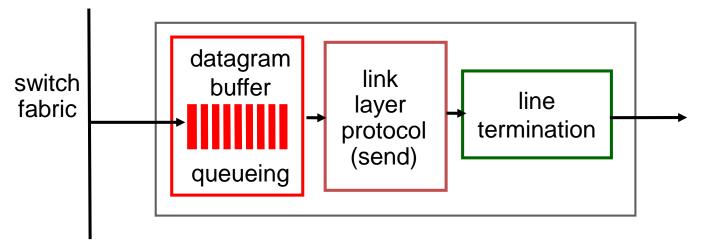

Switching via Memory: First Generation Router

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

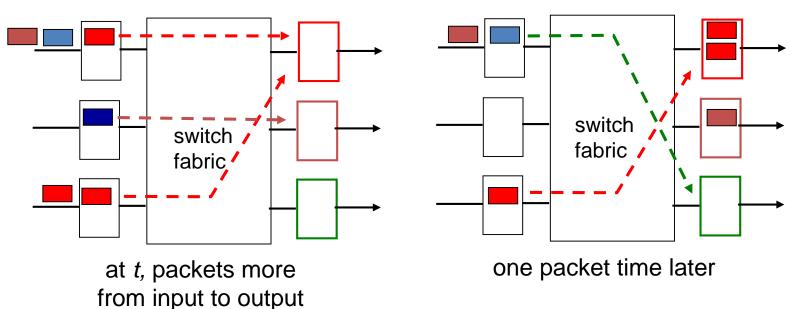
Switching via a bus

- datagram from input port memory
 - to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers


bus


Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network



Output Ports

- buffering required when datagrams arrive from fabric faster than the transmission rate
- scheduling discipline chooses among queued datagrams for transmission

Output Port Queuing

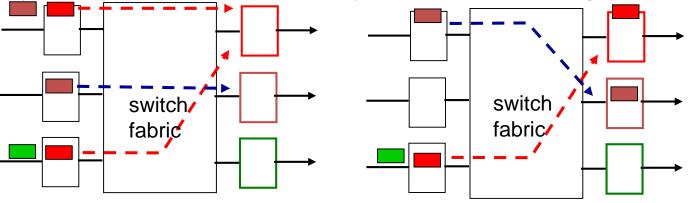
buffering when arrival rate via switch exceeds output line speed
queueing (delay) and loss due to output port buffer overflow!

How much buffering?

 RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C

– e.g., C = 10 Gpbs link: 2.5 Gbit buffer

recent recommendation: with N flows, buffering equal to


Input Port Queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!

Head-of-the-Line (HOL) blocking: queued datagram at front

of <u>queue</u> prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. lower red packet is blocked one packet time later: green packet experiences HOL blocking

Goals for Today

- nitecture
- Basic Switching Technologies/Router Architecture Overview
 - See Section 4.3 in book
- A 50-Gb/s IP Router
 - Craig Partridge, Senior Member, Philip P. Carvey, Isidro Castineyra, Tom Clarke, John Rokosz, Joshua Seeger, Michael Sollins, Steve Starch, Benjamin Tober, Gregory D. Troxel, David Waitzman, Scott Winterble. *IEEE/ACM Transactions on Networking (ToN)*, Volume 6, Issue 3 (June 1998), pages 237-248.

Multigigabit Router (MGR)

Architecture

- Network interfaces (Line cards)
- Forwarding Engine

• Network Processor

• Switching Fabric

Multigigabit Router (MGR)

Contributions

- Network interfaces (Line cards)
 - Forwarding Engine distinct from line cards
- Forwarding Engine
 - Complete set of forwarding tables, fast path
 - QoS
- Network Processor
 - Updates Routing Table
 - Separates and handles slow path
- Switching Fabric
 - Switched backplane

Goals for Today

- nitecture
- Basic Switching Technologies/Router Architecture Overview
 - See Section 4.3 in book
- A 50-Gb/s IP Router
 - Craig Partridge, Senior Member, Philip P. Carvey, Isidro Castineyra, Tom Clarke, John Rokosz, Joshua Seeger, Michael Sollins, Steve Starch, Benjamin Tober, Gregory D. Troxel, David Waitzman, Scott Winterble. *IEEE/ACM Transactions on Networking (ToN)*, Volume 6, Issue 3 (June 1998), pages 237-248.

Before Next time

- Project Proposal
 - due this Friday, Sept 19
 - Meet with groups, TA, and professor
- Lab2
 - Multi threaded TCP proxy
 - Due this Friday, Sept 19
- Required review and reading
 - "A Guided Tour Through Datacenter Networking," D. Abts and B. Felderman. Communications of the ACM (CACM), Volume 55, Issue 6 (June 2012), pages 44-51.
 - http://dl.acm.org/citation.cfm?id=2184335
 - http://wwwnew.cs.princeton.edu/courses/archive/spring13/cos598C/googlenetwork.pdf
- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule

