
Application Layer and Socket
Programming

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
September 3, 2014

Slides used and adapted judiciously from Computer Networking, A Top-Down Approach

Goals for Today
• Application Layer

– Example network applications
– conceptual, implementation aspects of network application

protocols
– client-server paradigm
– transport-layer service models

• Socket Programming
– Client-Server Example

• Backup Slides
– Web Caching
– DNS (Domain Name System)

Some network apps

• e-mail
• web
• text messaging
• remote login
• P2P file sharing
• multi-user network games
• streaming stored video

(YouTube, Hulu, Netflix)

• voice over IP (e.g., Skype)
• real-time video

conferencing
• social networking
• search
• …
• …

write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server software

communicates with browser
software

no need to write software for
network-core devices

• network-core devices do not
run user applications

• applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Creating a network app

server:
• always-on host
• permanent IP address
• data centers for scaling

clients:
• communicate with server
• may be intermittently

connected
• may have dynamic IP addresses
• do not communicate directly

with each other

client/server

Client-Server Architecture

process: program running
within a host

• within same host, two
processes communicate
using inter-process
communication (defined by
OS)

• processes in different hosts
communicate by
exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be contacted

 aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Network Applications
Communicating Processes

• process sends/receives messages to/from its socket
• socket analogous to door

– sending process shoves message out door
– sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Network Applications

• to receive messages,
process must have
identifier

• host device has unique 32-
bit IP address

• Q: does IP address of host
on which process runs
suffice for identifying the
process?

• identifier includes both IP
address and port numbers
associated with process on
host.

• example port numbers:
– HTTP server: 80
– mail server: 25

• to send HTTP message to
www.cs.cornell.edu web
server:
– IP address: 128.84.154.137
– port number: 80

 A: no, many processes
can be running on same
host

Network Applications
How to identify network applications?

• types of messages exchanged,
– e.g., request, response

• message syntax:
– what fields in messages &

how fields are delineated
• message semantics

– meaning of information in
fields

• rules for when and how
processes send & respond to
messages

open protocols:
• defined in RFCs
• allows for interoperability
• e.g., HTTP, SMTP
proprietary protocols:
• e.g., Skype

Network Applications
App-Layer protocols define:

data integrity
• some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

• other apps (e.g., audio) can
tolerate some loss

timing
• some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
 some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

security
 encryption, data integrity,

…

Communicating ProcessesNetwork Applications
What transport layer services does an app need?

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Network Applications
What transport layer services does an app need?

TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there
a UDP?

Network Applications
Transport Protocol Services

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Network Applications
Transport Protocol Services

Network Applications: Securing TCP

TCP & UDP
• no encryption
• cleartext passwds sent

into socket traverse
Internet in cleartext

SSL
• provides encrypted TCP

connection
• data integrity
• end-point authentication

SSL is at app layer
• Apps use SSL libraries,

which “talk” to TCP
SSL socket API
 cleartext passwds sent

into socket traverse
Internet encrypted

 See Chapter 7

Goals for Today
• Application Layer

– Example network applications
– conceptual, implementation aspects of network application

protocols
– client-server paradigm
– transport-layer service models

• Socket Programming
– Client-Server Example

• Backup Slides
– Web Caching
– DNS (Domain Name System)

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-
transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket Programming

Two socket types for two transport services:
– UDP: unreliable datagram
– TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Socket Programming

UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address and

port # to each packet
• rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Socket Programming w/ UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

Socket Programming w/ UDP

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Socket Programming w/ UDP

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever
Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Socket Programming w/ UDP

client must contact server
• server process must first be

running
• server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
• Creating TCP socket,

specifying IP address, port
number of server process

• when client creates socket:
client TCP establishes
connection to server TCP

• when contacted by client, server
TCP creates new socket for server
process to communicate with
that particular client
– allows server to talk with

multiple clients
– source port numbers used to

distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Socket Programming w/ TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Socket Programming w/ TCP

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Socket Programming w/ TCP

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Socket Programming w/ TCP

• application architectures
– client-server
– P2P

• application service requirements:
– reliability, bandwidth, delay

• Internet transport service model
– connection-oriented, reliable:

TCP
– unreliable, datagrams: UDP

Application Layer is the same in a data center!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP
 DNS
 P2P: BitTorrent, DHT

 socket programming: TCP,
UDP sockets

Perspective

Before Next time
• Project Group: Make sure that you are part of one
• Finish Lab0

• No required reading and review due
• But, review chapter 3 from the book, Transport Layer

– We will also briefly discuss
– Data center TCP (DCTCP), Mohammad Alizadeh, Albert

Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
ACM SIGCOMM Computer Communications Review,
Volumne 40, Issue 4 (August 2010), pages 63-74.

• Check website for updated schedule

Goals for Today
• Application Layer

– Example network applications
– conceptual, implementation aspects of network application

protocols
– client-server paradigm
– transport-layer service models

• Socket Programming
– Client-Server Example

• Backup Slides
– Web Caching
– DNS (Domain Name System)

• user sets browser: Web
accesses via cache

• browser sends all HTTP
requests to cache
– object in cache: cache

returns object
– else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Web Caches (proxies)

• cache acts as both
client and server
– server for original

requesting client
– client to origin server

• typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
• reduce response time for

client request
• reduce traffic on an

institution’s access link
• Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does P2P
file sharing)

Web Caches (proxies)

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Web Caching Example

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

origin
servers

1.54 Mbps
access link

154 Mbps
154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network 1 Gbps LAN

Web Caching Example: Fatter access Link

institutional
network 1 Gbps LAN

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 100%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Web Caching Example: Install Local Cache

Calculating access link
utilization, delay with cache:

• suppose cache hit rate is 0.4
– 40% requests satisfied at cache, 60%

requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network 1 Gbps LAN

local web
cache

Web Caching Example: Install Local Cache

• Goal: don’t send object if
cache has up-to-date
cached version
– no object transmission delay
– lower link utilization

• cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

• server: response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Web Caching Example: Conditional GET

Goals for Today
• Application Layer

– Example network applications
– conceptual, implementation aspects of network application

protocols
– client-server paradigm
– transport-layer service models

• Socket Programming
– Client-Server Example

• Backup Slides
– Web Caching
– DNS (Domain Name System)

people: many identifiers:
– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) -

used for addressing
datagrams

– “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
• distributed database

implemented in hierarchy of
many name servers

• application-layer protocol:
hosts, name servers
communicate to resolve
names (address/name
translation)
– note: core Internet function,

implemented as application-
layer protocol

– complexity at network’s
“edge”

DNS (Domain Name System)

why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance

DNS services
• hostname to IP address

translation
• host aliasing

– canonical, alias names

• mail server aliasing
• load distribution

– replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

DNS Structure

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

umass.edu
DNS servers

cornell.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

client wants IP for www.amazon.com; 1st approx:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

DNS Structure
A distributed hierarchical database

• contacted by local name server that can not resolve name
• root name server:

– contacts authoritative name server if name mapping not known
– gets mapping
– returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

DNS Structure
Root name servers

top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs,

museums, and all top-level country domains, e.g.: uk,
fr, ca, jp

– Network Solutions maintains servers for .com TLD
– Educause for .edu TLD

authoritative DNS servers:
– organization’s own DNS server(s), providing

authoritative hostname to IP mappings for
organization’s named hosts

– can be maintained by organization or service provider

DNS Structure
Top-Level Domain (TLD) and Authoritative Servers

• does not strictly belong to hierarchy
• each ISP (residential ISP, company, university) has

one
– also called “default name server”

• when host makes DNS query, query is sent to its
local DNS server
– has local cache of recent name-to-address translation

pairs (but may be out of date!)
– acts as proxy, forwards query into hierarchy

DNS Structure
Local DNS Name Servers

requesting host
cis.poly.edu

www.cs.cornell.edu

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.cornell.edu

78

TLD DNS server• host at cis.poly.edu
wants IP address for
www.cs.cornell.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

DNS Structure: Resolution example
root DNS server

45

6

3

recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

www.cs.cornell.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.cornell.edu

8

TLD DNS
server

DNS Structure: Resolution example

• once (any) name server learns mapping, it caches
mapping
– cache entries timeout (disappear) after some time (TTL)
– TLD servers typically cached in local name servers

• thus root name servers not often visited

• cached entries may be out-of-date (best effort
name-to-address translation!)
– if name host changes IP address, may not be known

Internet-wide until all TTLs expire
• update/notify mechanisms proposed IETF standard

– RFC 2136

DNS Structure
Caching and Updating Records

DNS: distributed db storing resource records (RR)

type=NS
– name is domain (e.g.,

foo.com)
– value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

DNS Structure
DNS Records

• query and reply messages, both with same message format

msg header
 identification: 16 bit # for

query, reply to query uses
same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS Structure
DNS Protocol and Messages

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS Structure
DNS Protocol and Messages

• example: new startup “Network Utopia”

• register name networkuptopia.com at DNS
registrar (e.g., Network Solutions)
– provide names, IP addresses of authoritative name

server (primary and secondary)
– registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

• create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

DNS Structure
Inserting Records into DNS

Attacking DNS

DDoS attacks
• Bombard root servers

with traffic
– Not successful to date
– Traffic Filtering
– Local DNS servers cache IPs

of TLD servers, allowing
root server bypass

• Bombard TLD servers
– Potentially more

dangerous

Redirect attacks
• Man-in-middle

– Intercept queries
• DNS poisoning

– Send bogus relies to DNS
server, which caches

Exploit DNS for DDoS
• Send queries with

spoofed source address:
target IP

• Requires amplification

	Application Layer and Socket Programming
	Goals for Today
	Some network apps
	Slide Number 4
	Slide Number 5
	Network Applications
	Slide Number 7
	Network Applications
	Network Applications
	Network Applications
	Network Applications
	Network Applications
	Network Applications
	Network Applications: Securing TCP
	Goals for Today
	Socket Programming
	Socket Programming
	Socket Programming w/ UDP
	Socket Programming w/ UDP
	Socket Programming w/ UDP
	Socket Programming w/ UDP
	Socket Programming w/ TCP
	Socket Programming w/ TCP
	Socket Programming w/ TCP
	Socket Programming w/ TCP
	Perspective
	Before Next time
	Goals for Today
	Web Caches (proxies)
	Web Caches (proxies)
	Web Caching Example
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Web Caching Example: Conditional GET
	Goals for Today
	DNS (Domain Name System)
	DNS Structure
	DNS Structure
	DNS Structure
	DNS Structure
	DNS Structure
	DNS Structure: Resolution example
	DNS Structure: Resolution example
	DNS Structure
	DNS Structure
	DNS Structure
	DNS Structure
	DNS Structure
	Attacking DNS

