N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ\ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

I-ECTURE 5: Ken Birman
MAKING DHTS DO MAGIC TRICKS! | spring, 2022

TODAY’S AGENDA: TWO PARTS

» Understanding how to put “anything at all” into a DHT for
scalability and high performance: DHTs can hold data in memory.

» Limitations and factors the DHT developer must keep in mind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 2

Presenter
Presentation Notes
Our fundamental hope is to spread a massive data set widely, so that it can be held in memory. Then we want to be able to get very fast access. A normal disk might have a 100us delay on a modern system (and perhaps even more on a slow disk storage device: 25ms isn’t unusual for a USB memory stick). With a DHT we can send messages on a fast network and could get a response in 1 or 2 us: perhaps 100x faster! So many systems think of the DHT as a fast storage solution.

Then they might use it mostly for caching. The famous API is called memcached, and is supported by products like Cassandra, Dynamo or Cosmos.
�But we can use DHTs for much more than just as a cache.

CENTRAL QUESTIONS WE WILL FOCUS ON

How spread out do | want my data to be?
How do deal with very large, complex, data structures (with pointersl)

What to do about the small but non-zero risk of key collisions

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 3

REMINDER: DHT BENEFITS (AND WHY)

The DHT idea can be traced back to work by people at Google, and to papers
like the Jim Gray paper on scalability.

We take some service and structure it into shards: sub-services with the identical
API, but handling disjoint subsets of the data.

We need some way to know where to place each data item. We use a key
here: the key is a kind of unique name for the data item, and by turning it into
an integer modulo the number of shards, we find the target shard.

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 4

Presenter
Presentation Notes
This is all just a quick reminder

DHT PICTURE

put(key,value)
get(key)

Client application DHT Service on many nodes
Shards on 2-nodes each, using state-machine replication

A DHT assumes that the data-center network is very fast. 10us delays
for a gRPC are typical — whereas the client application has 100ms to
send a reply back to the human end-user (customer)

HTTP://WWW.CS.CORNELL.EDU/COURSES /(S5412/20225P 5

SIDE REMARK @D T D

In fact it isn’t horrendously costly that the items are scattered around

> Those 10us - 100 us delays are very small and you might even be able
to fetch all your data in parallel, by issuing concurrent put/get requests
(this requires an asynchronous put/get, or multiple threads).

» A file system would have the same overheads, and more system calls:
to do a put or get would require multiple file system operations, if each
object is in a file by itself. So in fact put/get is relatively cheaper.

On the other hand, it still is faster to do talk to a server on the same machine

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 6

COLLOCATION

Sometimes we actually can run programs on the same machines that host
the DHT, and may want to avoid those network delays entirely.

This can lead us to think about ways to ensure that certain (key,value) pairs
end up collocated where our program will run.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 7

LOCKING LIMITATION @D

We are not given any way to do locking or 2phase commit. In fact Jim
Gray showed us that locking across shards would be ineffective.

A get or put is an atomic action on a single shard. For fault-tolerance, the
shard update can use state machine replication (atomic multicast or Paxos).

With this approach we get “unlimited” scaling, and we can even keep all
the data in memory (as long as the number of shards is big enough).

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 8

Presenter
Presentation Notes
Also a quick reminder

DHTS WORK BEST FOR DATA THAT DOESN’T
CHANGE AFTER IT IS INITIALLY STORED

Once a web page has been uploaded, we probably won’t update it
again. A web page that won’t change is an example of immutable data.

A DHT is ideal for this kind of data. Locking isn’t useful for a big read-
only data set even if we didn’t have sharding!

This is one reason DHTs are universally popular for caching.

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 9

EXAMPLE: AN NPR NEWS ARTICLE

4:41PM Tue Jan 21

This error message from a e

popular news site, NPR, is 404 Not Found

clearly caused by not finding e —

d 1-0 in q DHTI :E:(}l'l:le/:(:ié?'%lglgiécls;g;;p])}:)l;s)/r;s?st—electxon—prepared—z0200117
a , :

Hostld: HiyLcq89TDz1q/AWeyAStcZvanu2cp9R{iN3jNSzwFLrgMVQok4ey+h705dfOB8MS5935nBsJ2dk=

An Error Occurred While Attempting to Retrieve a Custom Error Document

® Code: NoSuchKey
e Message: The specified key does not exist.
e Key: error.html

They probably stored their
articles in the DHT, but somehow
got an error when trying to fetch this article to build my web page.

It could be an example of CAP: When a DHT resizes elastically, sometimes
it makes errors for a few seconds afterwards...

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 10

Presenter
Presentation Notes
It can be done! In fact this is a very common thing. This NPR web page probably was created by a first tier that talked to a bunch of microservices. Apparently one of them either was a DHT, or used a DHT, and got an error. Rather than crash, it generated some content that led us to see this nicely reported error message. In fact it looks like there were two errors: first some kind of no-such-key event, and then a second one when trying to build a smart error report.

BUT AN NPR NEWS STORY IS TOO EASY.

For the first few years, big search companies focused on just downloading
snapshots of web pages and offering quick ways to find things.

Over time, however, there was an appreciation that the social network is
the bigger opportunity. And these evolve rapidly over time.

So we saw a growing need to store data that does change.

HTTP-//WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 11

HOW TO STORE “ANYTHING” AT LARGE SCALE

These data sets are huge — MUCH too big for any single computer.

Yet not only do we want to hold the data for access, we want supe¢fast
access: we want the data to be in memory, not on disk!

A DHT can solve this for us. The network 1/O cost is a factor, but is still
much faster than disk |/O. And modern datacenter networks, with the
fastest software, can push network delays down to the 1-2us range.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 12

Presenter
Presentation Notes
So now here is the puzzle: What if we are trying to store something that isn’t just a (key,value) pair?

HOW TO STORE “ANYTHING” AT LARGE SCALE

Puzzle: A DHT officially just holds (key, value) data:
> The key is an integer. Some permit various sizes: 64 bits, 128, 256.
» The value is generally either another integer, or a byte array.

» Some DHTs are specialized for (integer, byte[]), and some for (integer,integer).
These often are used “together” for flexibility.

So how can we come up with a key for “anything at all’?¢ And how can we use
this value model to store “anything at all”?

Solution: We use serialization. This converts an object to a byte array.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 13

Presenter
Presentation Notes
DHTs are often specialized by vendors because this allows them to optimize very heavily. Any uncertainty about object sizes can be confusing and make it harder to get the peak speed. DHTs can be used in pairs, though, or even have one product that offers two specialized modes. This lets you first store a big object in the DHT that stores big byte arrays, using some kind of unique storage identifier. Then you can use its storage key in other DHT records configured to run in the “smaller fixed size” version. That’s common right now.
�Serialization is just a standard term for taking some in-memory object and creating a byte-array for storing that object on a file, or sending it on the network.

COMING UP WITH SUITABLE DHT KEYS

You need a unique name for the objects you are storing.

For example: Ken’s dog was named Biscuit. But “Biscuit”
is not a unique name. The DHT could have some other
object with that name too.

On the other hand, “/users/Ken Birman /pet/Biscuit” is a unique key, and
we can hash it with SHA64 or SHAT 28 into a unique integer.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 14

Presenter
Presentation Notes
The question of deciding what the key should be is surprisingly confusing at first. The core problem is that the key must be unique (at least for the application, but perhaps even unique “globally” in the whole data center). This leads us towards keys that look like file system pathnames. But the DHT itself normally wants the key to just be a number, which it then hashes and then considers modulo the number of shards. So our challenge is to convert a natural name to this unnatural kind of key.

BASICALLY... TWO CASES TO CONSIDER

[1] Objects at the “root” of some kind of structure need a name that a
client application will know a-priori. We use a file pathname as a key.

» It will be hashed automatically, turning it into a numerical key.

» Collisions are very rare, but not “impossible”. Must keep this in mind!

[2] Objects that are really internal to a structure, like “rows in a table” or
“photos in a list of pets,” need some sort of generated unique key. Here
we use a key generating service to make life easier.

HTTP.//WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 15

... KEY GENERATING SERVICES.

They provide a genuinely unique key
> Microsoft and AWS both have “registry” services.
» The resulting keys will have no obvious meaning to a human user, but is unique.

» These are for objects we will fetch “algorithmically”, not for external programs
to use directly.

HTTP.//WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 16

Presenter
Presentation Notes
An overly simple form of key would easily clash even in a single user’s single application. And because a DHT might be shared with many users, poor key choices would be very disruptive.

[Registry Editor
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\BGFX

EXAMPLE: MICROSOFT REGISTRY

~ = computer
> HKEY _CLASSES_ROOT
HKEY_CURRENT_USER
hd HEKEY_LOCAL_MACHIME
» BCDO0000000

» DRIVERS
> HARDWARE
» SAM
SECURITY
» SOFTWARE
v | SYSTEM
» ActivationBroker
bdnative

» ControlSet001
b CurrentControlSet

[TT46DBOF-97E0-4E26-9543-26B41FC22FT9)
ACPI

PP
AppReadiness

> Arbiters

> Audio

> BackupRestore
BGFX

» BitLocker
BitlockerStatus

» Bluetooth

> Cl

MName
ab|(Default)

@i
o

AnimationTotal

ji'é"(:ompress Bitmaps

4 FadeCpu
S¥Fadeframes
#éFadeHigh
#%|Fadelo
.‘-’-'{Fa:!eLow

% FadeMemary
$%FadeOverlap
% FadeProlog

S FadeTotal

$% Height
#%Logosize

e ProgressFrames

$lProgressHigh
ProgressLow
ProgressManual
%8 ProgressMemory
#s|ProgressProlog

| ProgressTotal
is|ResidentSize
#4Resume
Pwidth

Type

REG_SZ
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWGORD
REG_DWORD
REG_DWORD
REG_DWORD
REG_DWOCRD
REG_DWORD

Data

{value not set)
0x000021eb (12779)
0x00000020 (32)
0x00000000 {0}
Ox000000786 (118)
000000007 {7)
0x00000025 (37)
0x00000088 (136)
0x00000023 (25)
0x001cdaB0 (1890944)
0x00043874 (276596)
0x000030ec (12524)
0x000031eb (12779)
0x00000300 {76E)
Ox0004514a (282954)
000000000 (0)
000000000 (0)
0x00000000 (0)
0x00000000 {0}
0x0007be80 (507520)
0x00000000 {0)
0x00000000 {0)
0x0001dc90 (122000)
000000001 (1)
0x00000400 (1024)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P

17

Presenter
Presentation Notes
Generally, we have the system help us. We either use a definitely unique pathname (a string) and then convert it to a hash code as the key, or we just ask for help from the operating system. In this example we see both string names (unique for this local computer, which has a unique system name at a higher level), or in one case, we see a generated key. Then on the right we see (for some specific selected key) a whole list of (name, data) pairs,.

CAN YOU PICK A KEY THAT WILL MAP TO A
SPECIFIC SHARD?

In fact, you probably can! It may take a few tries.

You would need to know the DHT hashing scheme and be free to vary the
keys (like by appending a number or something). Then you could just retry
until the key hashes to the shard you want!

Some DHT developers actually use ideas like this. Some DHTs even let you
just specify where to put your objects (but those need a form of lookup
table, to be able to find the objects later for get).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 18

“What is in a name? That which we call a rose
By any other name would smell as sweet...”

NAME SPACES AND KEYS

Juliet, in Shakespeare’s Romeo and Juliet

A name space is some sort of user-oriented, semantically sensible, place to
store names of objects. We could actually have one object in many name
spaces, if the same object makes sense in different situations.

The namespace is used as a “service” to map from a name that makes
sense to the user, to a unique internal key that makes sense in a DHT.

A cloud file system always has a namespace server as one component,
We think of the storage servers as a separate, distinct, component.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 19

Presenter
Presentation Notes
It is important to understand that we can general build services to keep track of the mapping from a user-friendly name to a unique key. We call these “name space” services. Thus it would be unusual for a human user to ever see the key actually in use for the DHT. We humans mostly see string names, probably path names.

KEN’S PETS

So we could, for example, have a kind of table listing all the pets Ken has
had, with information about them

Pet Nome [Period ___ISpecies ___________[Photolist | Health Status__

Nerd 1961-1962 Gerbil Empty Deceased
Susie 1970-1986 Keeshund IMG-17171, ... Deceased
Biscuit 2003-2013 Golden Retriever IMG-22187, ... Deceased

This table would be a “name space” if the photo list is a list of keys

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 20

Presenter
Presentation Notes
You can also have a table in which each row is considered as a separate object. KensTable/row3 could be a name for this kind of data.

MANY THINGS CAN BE GIVEN UNIQUE KEYS

We could have a unique key for each row in a table.

We could have a unique key for each photo in a photo album. The album
itself could be “named” but also have a key: its value would be a list of
the keys for photos in the album.

Cloud systems use this approach very broadly!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 21

COULD KEYS “COLLIDE”?

Yes, if the keys don’t have a large enough range of values, or the random
number generator isn’t very effective.

Most cloud systems favor fairly large keys, like 64 bits. And some key
generators use a variety of tricks o make sure that they won’t give out the
same key twice. A random number generator wouldn’t necessarily work.

Collisions would cause problems because two different objects would end
up sharing what should be a unique name — a serious inconsistency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 22

WHAT PROBABLY HAPPENED IN THE NPR SITE?

It probably wasn’t a key collision.

In fact, | get news alerts for certain kinds of news stories, like confirmed
first-encounters with space aliens. So... NPR posts a first-encounter story.
And | receive an immediate alert!

The story was saved into a DHT, but maybe the DHT replication scheme is
a bit slow, or it was resizing just at that moment for elasticity reasons. Until
it “settles”, the key is correct but the story just can’t be found (yet).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 23

Presenter
Presentation Notes
The point here is that even a DHT can be transiently inconsistent if we try to look at it right as an insert is occurring, or just as it is being resized elastically,

DO YOU REMEMBER “BASE”

Mentioned in lecture 3. BASE means a ‘Basically Available Service with
Eventual Consistency”.

A DHT often uses the BASE guarantee. Updates aren’t instantly visible or

even guaranteed to “stick” if a crash happens right after the update. But
problems are rare.

This is a frustrating but common cloud property — many services do this.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 24

HOW DID THIS RELATE BACK TO CAP?

CAP was all about how we often face choices:
» Give a super fast response on a web page, or an instant notification

> But this means not waiting for the elastic reconfiguration to finish, or
for the replicated update to fully propagate to all the replicas.

> We might operate in an inconsistent way, briefly!

CAP says: you can’t have all three from {C,A,P} at the same time.

Relax consistency to get better availability and respond immediately even if a
service you would have liked to check with is temporarily not responsive.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 25

SUPPOSE WE HAD A LIST OF PHOTOS

The list itself is a data structure of objects that are linked by pointers.

The objects could be something like a photo description, and the photo (or
other kinds of photo properties: “meta-data”).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 26

Presenter
Presentation Notes
As we get more and more fancy, we need a more systematic approach.

HOW TO STORE “ANYTHING” AT LARGE SCALE

class myPet { myPet biscuit {
int vid; vid := 5731,
animal species; ‘ species := animal::dog,
hashset<string,photo> photo_collection; photo_collection := { [“on a rug”],

These obijects all have type names the
application understands, data that matches.

But the DHT wouldn’t know these object types! Amazon created the DHT
long before you wrote the code defining this class.

HTTP://WWW.CS.CORNELL.EDU/COURSES /(S5412/20225P 27

Presenter
Presentation Notes
A core problem we face is that the DHT was created years ago by Amazon or Azure. They didn’t know we would want to store this list of pets into it. They don’t even know the definitions of the objects in your Python or Java code. So the DHT itself can’t just accept objects – it needs them to be converted to some standard form.

NEXT ISSUE: CLOUD DATA FORMS A HUGE,
COMPLICATED GRAPH

facebook (%

Hetwork | Map L=t
p— Fox News

k : q7.com._ []
p chicksonrighteam — &’?v foxSatlanta.com Daily pail @nline_———) o "fact-checked”articles
~——g Daily Mail e Facebook posts

Daily Mail Australia N
® Twitter posts

fox29.6 L N\ TEESACCOM: . 4 # " i
¥ | Save imags Center Metwark |4 = curlosmossqrA hm\foi’l:-l“\?"as@m [// @ WethePeople Anop el Wora e R epest anides
. : : @.\m\ ! —@ News "he said she said”articles

foxdnews.com—foxnews.com

Gl
sci-techuniverse.com dai ymail.co.uk
7

. trendingpests.net theepochtimes.con 2
themindunleashed.com

futurism.com forpes.com 3

_\~ascienceenthusiast.com

tHesun.co.uk
MIrerco.uk _ wxyz.com| |

=~
T |

[] abc7chicago.com | 52 N e
— i ‘ashingfon State for
Q | e ~
denver.cbsfgcal.com 5 clencebasedmedicine.org IS0 Tramp 2020
cbsfecom N\
boston.cbslosal.com

ason Silva

Forbes

" oslocalicom
pittsburgh.cbslocal.com
8
rushlimbaugh.com e >grbes.com 2 — The Israel Project
gellerrepoitepm @, N / —
rewsmaea : Forbes

naturalnewsTeel 05 The River

westernjournal:Tom Dose

—@
NYC Fire Wire

orbes.co N

® ®
\h“”{"“e’ o Kelly Frey WTAE
althatsinteresting.com

NewYork Post (Tw)

Al thefederalistpapers.org
vation

1e Know |

nyposticar

aol.com

whdh.com [)
disclose.tv

- icitinfo.com
-~ H i irel news.com.au g
'/ fU“ na '# azine.us Ewsdia u‘ wirgeom distractify.com Natipnwide Unrest ReivEnSRCOm
WS krg.com 2 ; = ———y
° wig.com /e cljckondgtroit.com R D ot Roet (2) h nited With Israel
unitedwithisrael.c

wsvn.com
i H usnews.com,
daitgiFe\co ~

nzherald.co.nz - locallD.com anNOAEews. [] e Vinitad with larcalam

Ken belongs to Entrepreneurs’ Org The entrepreneurs shared a viral (completely exaggerated,
basically fake) story about a complete cure for cancer.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 28

SERIALIZATION CONCEPT

With a single object, a serializer just emits a self-describing data structure
as a byte array, listing the field-types and their values.

If an object has sub-fields, it uses a recursive descent to serialize the inner
object too. The self-describing byte array has a way to represent: “this is
an object too, and the next 184 bytes describe it”.

The serializer output is often larger than the original object

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 29

| ALSO, RECURSION ONLY HELPS FOR WHAT IS
LOGICALLY A “SINGLE NODE”

The serializer knows how to do recursive serialization but only for what is
logically a single object (and its subobijects).

Key = “Ken Birman/pets/Photos of Biscuit”

Value = [OxFF OxA6 Ox1B 0x00 O0x99 Ox11 Ox03 OxFF OxFF ...]

A deserializer is used to recreate the data structure. This is also sometimes
called marshalling and demarshalling.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 30

REASONS SERIALIZATION CAN BE COSTLY

We generally like the byte array to be in a “hardwareindependent
format”, meaning that both Intel and ARM (and other devices) can
reconstruct the object into their local data representation.

» There are several opinions about the best byte-order for integers

> Floating point formats are hardware-specific

» Some systems null-terminate strings; others just view a string as bytes
> Memory “alignment” rules differ from machine to machine.

» Compilers can make additional optimization choices

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 31

WHAT ABOUT A MORE COMPLEX STRUCTURE?

When we talked about Facebook we focused on caching images. But what
if we also wanted to use a DHT to hold a social network graph

» A social network has lots of structure: entities related by edges.

» Such a graph is much too large to hold on one computer.

The edges are like pointers. We can use unique keys for this role, but now
we may run into the issue of collocation.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 32

Presenter
Presentation Notes
The message on this slide is that while we can use this recursive serialization for objects small enough to fit on one DHT node, it would go wrong if we end up with massive byte arrays that are too big to fit. So with something like a giant B-Tree with billions of nodes, we’ll need some way to spread the data structure itself out within the DHT.

A SIMPLE CASE

Let’s think about a graph with just three nodes

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 33

SHOULD WE COLLOCATE THE ROOT, A AND B?

If we can put them on one shard, and our access program can run on that
same node, we gain speed.

But we also load more data into that single shard, and could cause a less
smooth distribution of data.

Also, for a really big graph, the shard would run out of space.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 34

myPet biscuit {
vid := 5731,
species := animal::dog,
(“Ken Birmqn/pefs/BiSCUif"’ photo_collection := { [“on a rug”],
[“in 1%5", }
) \

OUR BASIC CHOICE

Pick some sort of rule for chunking the graph into “subgraphs” that will
reside on a single shard. Think of the node id’s as keys.

For pointers within the same shard, collocate the child objects with their
parent. Here some form of local key will be fine.

For pointers that lead to nodes in other chunks, hence other shards, we use
true keys that tell us which shard has that chunk.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 35

Presenter
Presentation Notes
There is a kind of trivial way to map the B-Tree nodes into a DHT: Give each node a node-id and use that as a key. Then the DHT will hash the value, which randomizes, and then use the hashed value to find the shard.

MODIFIED BEHAVIOR?

We would need to check: is this node-id for a local node, or one in some
other DHT shard?

> If local, return a pointer to it.

> If remote, fetch it via a network RPC. Allocate memory (temporarily)
to hold the copy. If the application modifies the object, write it back
using another RPC. Free the memory when the access is finished.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 36

WHAT WILL THIS COST?

Now every node access might require a DHT get operation.

We can do a bit better: if we run our tree logic on the same computers
that run our DHT, then local get operations will be free. Only remote ones
will be costly.

In Homework 2 we explore the value of recoding a tree search so that it
runs “inside” a DHT instead of “outside” the DHT.

HTTP://WWW.CS.CORNELL.EDU/COURSES /CS5412/20225P 37

DHTS CAN BE “TOO GENERAL” FOR SOME USES

At Facebook, the early work on social networking used one shared DHT.

But the social networking graph was huge, very complicated, and very
heavily used. Facebook decided that it was just not an efficient solution.

They redesigned it, and later in the course we will learn about their
solution: Facebook TAQO, a specialist for social network graph storage.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 38

A WORRY ABOUT GARBAGE COLLECTION!

When we use a distributed solution, such as a DHT, we often need to make
copies of objects. For example, server A uses get to fetch a copy of some node
that resides on server B.

But these copies then occupy memory, and we need to free that memory when
finished with the copy. Otherwise, memory will leak and the server will
eventually crash.

Fortunately, modern languages automate this step (in C++, use shared pointer
template for the same behavior).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 39

WHAT ABOUT STORAGE IN THE DHT ITSELF?

A DHT doesn’t necessarily know how to garbage collect the (key,value)
objects stored into it!

It does keep track: each DHT object has a user-id (who created it), and the
user’s account gets charged for the space consumed.

> Benefits? Total control, plus keys only need to be unique for the user
or the application, not across the whole cloud.

> Problem: Many people are careless about freeing up the space!

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 40

DHT CLEANUP SUGGESTIONS

Always give an expiration time for every key,value) tuple. If you want to
keep an object longer, use a longer expiration time, but not infinite.

In your code, try to explicitly delete any temporary content you load into a
DHT. Put it there, run for a while, but then delete it.

Commercial products offer fancier and powerful features, such as “delete
these objects when such-and-such a server shuts down.” Use them!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 41

THE CLOUD CAN BE A VERY EXPENSIVE PLACE

When used properly, a cloud is often cheaper than owning hardware.

This is because you are sharing costs such as buying it and managing it
with other users, and your share is potentially much lower.

But carelessness in storage management can leave all sorts of junk that
might never be deleted, and you will be charged for it

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 42

OTHER THINGS TO THINK ABOUT

Some DHT products allow you to control the hash function they will use. But
this is not a standard thing — many do not.

Every DHT allows you to pick your own keys. And most DHTs tell you what
hash function they will use, so you can pick keys “intelligently” if you wish.

Hot spots can be an issue. Even uniformly random inserts might be clumpy.
And you can’t know which keys will be queried: some may be very popular

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 43

ONE DHT? OR ONE PER APPLICATION?

Amazon and Azure both urge you to use their DHT products: AWS Dynamo
and Azure Cosmos.

But this means that many applications and even many users would
potentially share the same storage infrastructure!

Is this a bad thing?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 44

ISSUES TO THINK ABOUT

The DHT server will be more efficient in its use of space if shared by many
users, so it will be ecologically greener and hence cheaper to use.

It will also stay busy all the time. If we plan to own a server and power it
up, keeping it busy makes a lot of sense. But a shared server could
become a hot spot because of some other user who pounds on some
specific DHT item and overloads that shard.

» Your performance would suffer, and yet you have no way to know why!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 45

SHARING CAN CREATE SECURITY ISSUES

Another form of leakage arises if data from one application or one user
becomes visible to some other application or user, without permissions.

A DHT with distinct key spaces shouldn’t leak information, but there could
be software bugs or even performance behaviors that actually do reveal
sensitive content, unintentionally.

We will discuss this in a future lecture. It is not a huge risk, but it is worth
being aware of it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/20225P 46

SUMMARY

Almost anything can be stored into a DHT. The cloud does this. But it isn’t
free: you need to be clever to encode your application into a DHT.

Think about keys, object sizes, access patterns, costs. Be wary of

“leakage” (neglecting to delete temporary data) or you will get a BIG
monthly bill!

HTTP://WWW.CS.CORNELL.EDU/COURSES/(S5412/20225P 47

	Lecture 5: �Making DHTs do magic tricks!
	Today’s agenda: Two parts
	Central questions we will focus on
	Reminder: DHT benefits (and why)
	DHT picture
	Side remark
	Collocation
	Locking limitation
	DHTs work best for data that doesn’t change after it is initially stored
	Example: An NPR news Article
	But an NPR news story is too easy.
	How to Store “Anything” at large scale
	How to Store “Anything” at large scale
	Coming up with suitable DHT keys
	Basically… two cases to consider
	… Key generating services.
	Example: Microsoft Registry
	Can you pick a key that will map to a specific shard?
	Name Spaces and keys
	Ken’s Pets
	Many things can be given Unique keys
	Could keys “collide”?
	What probably happened in the NPR site?
	Do you remember “BASE”
	How did this relate back to CAP?
	Suppose we had a list of photos
	How to Store “Anything” at large scale
	Next issue: Cloud Data forms a huge, complicated Graph
	Serialization concept
	Also, Recursion only helps for what is logically a “single node”
	Reasons serialization can be costly
	What about a more complex structure?
	A simple case
	Should we collocate the root, a and B?
	Our basic choice
	Modified behavior?
	What will this cost?
	DHTs can be “too general” for some uses
	A worry about garbage collection!
	What about storage in the DHT itself?
	DHT cleanup suggestions
	The cloud can be a very expensive place
	Other things to think about
	ONE DHT? Or one per application?
	Issues to think about
	Sharing can create security issues
	Summary

