
CS5412/LECTURE 12
GOSSIP PROTOCOLS

Ken Birman
CS5412 Spring 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 1

GOSSIP 101

Gossip protocols: Ones in which information is spread node-to-node at
random, like a Zombie virus.

At first, the rate of spread doubles
on each round of gossip.

Eventually, a lot of “already infected”
events slow the spread down.

CS5412 SPRING 2016
2

KEY ASPECTS TO THE CONCEPT

Participants have a membership list, or some random subset of it.

They pick some other participant at random, once every T time units.

Then the two interact to share data:

The messages are of fixed maximum size.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 3

{
Push: A “tells” B some rumors

Pull: A “asks” B for news

Push-Pull: Both

NOTICE THAT GOSSIP HAS FIXED PEAK LOAD!

Every process sends and receives at the same fixed rate (due to random
peer selection, some processes might receive 2 messages in time period T,
but very few receive 3 or more… the “birthday paradox”)

And at most, we fill those messages to the limit with rumors, but then they
max out and nothing more can be added.

So gossip is very predictable. System managers like this aspect.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 4

GOSSIP SPREADS SLOWLY AT FIRST, THEN FASTER

Log(N) tells us how many rounds (each taking T time units) to anticipate
 With N=100,000, log(N) would be 12
 So with one gossip round per five seconds, information would need one

minute to spread in a large system!

Some gossip protocols combine pure gossip with an accelerator
 A good way to get the word out quickly

CS5412 SPRING 2016 5

EASY TO WORK WITH

A recent Cornell student created a framework for Gossip applications,
called the MICA system (Microprotocol Composition Architecture)

You take a skeleton, add a few lines of logic to tell it how to merge states
(incoming gossip), and MICA runs the resulting application for you. Plus, it
supports a modular, “compositional” coding style.

Use cases were mostly focused on large-scale system management.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 6

https://www.inf.usi.ch/faculty/soule/ecoop2014.pdf

BIMODAL MULTICAST

CS5412 SPRING 2016 7

This uses gossip to send a message from one source to many receivers. It
combines gossip with a feature called IP multicast: an unreliable 1-to-many
UDP option available on optical Ethernet

In Bimodal Multicast, the first step is to send a message using IP multicast.
 Not reliable, and we don’t add acks or retransmissions
 No flow control (but it does support a rate limiting feature)
 In data centers that lack IP multicast, can simulate by sending UDP

packets 1:1. Again, these use UDP without acks

WHAT’S THE COST OF AN IP MULTICAST?

CS5412 SPRING 2016 8

In principle, each Bimodal Multicast packet traverses the relevant data
center links and routers just once per message

So this is extremely cheap... but how do we deal with systems that didn’t
receive the multicast?

MAKING BIMODAL MULTICAST RELIABLE

CS5412 SPRING 2016 9

We can use gossip! The “rumors” will be the IP multicast messages!

Every node tracks the membership of the target group (using gossip)

Then after doing the IP multicast, “fill in the holes” (missed messages).

MAKING BIMODAL MULTICAST RELIABLE

CS5412 SPRING 2016 10

So, layer in a gossip mechanism that gossips about multicasts each node knows about

 Rather than sending the multicasts themselves, the gossip messages just talk about
“digests”, which are lists of messages received, perhaps in a compressed format

 Node A might send node B
1. I have messages 1-18 from sender X
2. I have message 11 from sender Y
3. I have messages 14, 16 and 22-71 from sender Z

 This is a form of “push” gossip

MAKING BIMODAL MULTICAST RELIABLE

CS5412 SPRING 2016 11

On receiving such a gossip message, the recipient checks to see which
messages it has that the gossip sender lacks, and vice versa

Then it responds
 I have copies of messages M, M’ and M’’ (which you seem to lack)
 I would like a copy of messages N, N’ and N’’

An exchange of the actual messages follows

THIS MAKES IT “BIMODAL”

There is a first wave of message delivery from the IP multicast, which takes
a few milliseconds to reach every node in the whole data center.

But a few miss the message.

Then a second wave of gossip follows, filling in the gaps, but this takes a
few rounds, so we see a delay of T*2 or T*3 while this plays out.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 12

Delay

Count of nodes
reached after

this delay

EXPERIMENTAL FINDINGS

Bimodal multicasts works best if the initial IP multicast reaches almost
every process, and “usually” this is so.

But “sometimes” a lot of loss occurs. In those cases, N (the number of
receivers missing the message) is much larger.

Then the second “mode” (second bump in the curve) is large and slow.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 13

OPTIMIZATIONS

CS5412 SPRING 2016 14

Bimodal Multicast resends using IP multicast if there is “evidence” that a
few nodes may be missing the same thing
 E.g. if two nodes ask for the same retransmission
 Or if a retransmission shows up from a very remote node (IP multicast

doesn’t always work in WANs)

It also prioritizes recent messages over old ones

With these changes, “almost all” receivers will get the message via IP
multicast, so N is small and gossip fills gaps within just 2 or 3 rounds.

LPBCAST VARIATION (KERMARREC, GUERRAOUI)

CS5412 SPRING 2016 15

In this variation on Bimodal Multicast instead of gossiping with every node in a system,
the protocol:
 Maintains a “peer overlay”: each member tracks two sets of neighbors.
 First set: peers picked to be reachable with low round-trip times.
 Second set: peers picked to ensure that the graph is an “expander” graph.
 Called a “small worlds” structure by Jon Kleinberg.

Lpbcast is often faster, but equally reliable!

SPECULATION... ABOUT SPEED

CS5412 SPRING 2016 16

When we combine IP multicast with gossip we try to match the tool we’re
using with the need

Try to get the messages through fast... but if loss occurs, try to have a very
predictable recovery cost
 Gossip has a totally predictable worst-case load
 Even the IP multicast acceleration idea just adds an unacknowledged IP

multicast message or two, per Bimodal Multicast sent.
 This is appealing at large scales

How can we generalize this concept?

ASTROLABE

Help for applications adrift in a sea of information

Structure emerges from a randomized gossip protocol

This approach is robust and scalable even under stress that cripples
traditional systems

Initially developed by a team led by Robbert van Renesse.

Technology was adopted at Amazon.com (but they rebuild it over time)

CS5412 SPRING 2016 17

ASTROLABE IS A FLEXIBLE MONITORING OVERLAY

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2231 1.7 1 1 6.0

CS5412 SPRING 2016 18

ASTROLABE IN A SINGLE DOMAIN

Each node owns a single tuple, like the management information base (MIB)

Nodes discover one-another through a simple broadcast scheme
(“anyone out there?”) and gossip about membership
 Nodes also keep replicas of one-another’s rows
 Periodically (uniformly at random) merge your state with some else…

CS5412 SPRING 2016 19

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu
CS5412 SPRING 2016 20

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

swift 2011 2.0

cardinal 2201 3.5

CS5412 SPRING 2016 21

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2201 3.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu
CS5412 SPRING 2016 22

OBSERVATIONS

Merge protocol has constant cost
 One message sent, received (on avg) per unit time.
 The data changes slowly, so no need to run it quickly – we usually run it

every five seconds or so
 Information spreads in O(log N) time

But this assumes bounded region size
 In Astrolabe, we limit them to 50-100 rows

CS5412 SPRING 2016 23

BIG SYSTEMS…

A big system could have many regions
 Looks like a pile of spreadsheets
 A node only replicates data from its neighbors within its own region

CS5412 SPRING 2016 24

SCALING UP… AND UP…

With a stack of domains, we don’t want every system to “see” every
domain
Cost would be huge

So instead, we’ll see a summary
Name Time Load Weblogic

?
SMTP? Word

Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

cardinal.cs.cornell.edu

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

CS5412 SPRING 2016 25

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

ASTROLABE BUILDS A HIERARCHY USING A P2P PROTOCOL THAT
“ASSEMBLES THE PUZZLE” WITHOUT ANY SERVERS

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing query
output is visible system-wide

Name Load Weblogic? SMTP? Word
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12

CS5412 SPRING 2016 26

LARGE SCALE: “FAKE” REGIONS

These are
 Computed by queries that summarize a whole region as a single row
 Gossiped in a read-only manner within a leaf region

But who runs the gossip?
 Each region elects “k” members to run gossip at the next level up.
 Can play with selection criteria and “k”

CS5412 SPRING 2016 27

HIERARCHY IS VIRTUAL… DATA IS REPLICATED

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Yellow leaf node “sees” its neighbors and the
domains on the path to the root.

Falcon runs level 2 epidemic
because it has lowest load

Gnu runs level 2 epidemic because
it has lowest load

CS5412 SPRING 2016 28

HIERARCHY IS VIRTUAL… DATA IS REPLICATED

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Green node sees different leaf domain but has
a consistent view of the inner domain

CS5412 SPRING 2016 29

WORST-CASE LOAD?

A small number of nodes end up participating in O(logfanoutN)
epidemics
 Here the fanout is something like 50
 In each epidemic, a message is sent and received roughly every 5s

We limit message size so even during periods of turbulence, no
message can become huge.

CS5412 SPRING 2016 30

WHO USES ASTROLABE?

Amazon doesn’t use Astrolabe in this identical form, but they built
gossip-based monitoring systems based on the same ideas.

They deploy these in their big data centers!
 Astrolabe-like mechanisms track overall state to diagnose issues
 They also automate reaction to temporary overloads

CS5412 SPRING 2016 31

EXAMPLE OF OVERLOAD HANDLING

Some service S is getting slow…
 Astrolabe triggers a “system wide warning”

Everyone sees the picture
 “Oops, S is getting overloaded and slow!”
 So everyone tries to reduce their frequency of requests against service S

What about overload in Astrolabe itself?
 Could everyone do a fair share of inner aggregation?

CS5412 SPRING 2016 32

IDEA THAT ONE COMPANY HAD

Start with the normal Astrolabe approach

But instead of electing nodes to play inner roles, assign them roles, left to
right

N-1 inner nodes play two roles: aggregation and “be a leaf node”.

What impact will this have on Astrolabe?

CS5412 SPRING 2016 33

CS5412 SPRING 2016 34

WORLD’S WORST AGGREGATION TREE!

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L
∅

An event e occurs
at H

P learns O(N)
time units later!

G gossips with H
and learns e

CS5412 SPRING 2016 35

WHAT WENT WRONG?

Each node does equal “work” but information spreads very slowly – O(N)

In a normal configuration Astrolabe benefits from “instant” knowledge
because the epidemic at each level is run by someone elected from the
level below. This short-circuits the path and speeds the spread of gossip.

In the modified configuration, those short-circuit steps no longer occur.

CS5412 SPRING 2016 36

INSIGHT: TWO KINDS OF SHAPE

We’ve focused on the aggregation tree

But in fact should also think about the information flow tree

CS5412 SPRING 2016 37

INFORMATION SPACE PERSPECTIVE

Bad aggregation graph: worst-case diameter N

Astrolabe version: expander graph, with diameter log(N)

H – G – E – F – B – A – C – D – L – K – I – J – N – M – O – P

A B C D E F G H I J K L M N O P

A C E G I K M O

A E I M

A I

A
 –

B

C
 –

D

E –
F

G
 –

H

I –
J

K
–

L

M
 –

N

O
 –

P

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L∅

IS GOSSIP USED MUCH TODAY?

The basic gossip method remains very valuable for systems that need to
do some form of steady-cost tracking of loads, available space on servers,
etc. Bimodal Multicast is widely cited and probably also used.

The predictable steady loads and the guarantee of freedom from load
spikes and instabilities are valuable.

But Astrolabe’s hierarchical structure is viewed as more of a cool teaching
idea and is not used in real systems (as far as Ken knows).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 38

FAMOUS TALE OF WOE

Amazon’s S3 system (cloud storage) uses gossip to track available space.

But one file system become “overfull” and reported -53 blocks of space.
Amazon’s system was using unsigned numbers for these reports.

Unfortunately, -53 is 0xFFFFFF35 = (unsigned) 4,294,967,093… And
worse, Amazon couldn’t “purge” this bad number from their gossip system!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 39

I’m full

I’m half full with
room for 26 gallons

I’m overfull with 4,294,967,093
gallons free space

SWARM COMPUTING

One use case that looked promising seems to have failed:
 Swarm-style computing for small devices, robotics
 Convoy-style communication for self-driving cars.

The concept and potential value should be obvious.

But they failed because we lack suitable hardware for quick connection
establishment and then rapidly exchanging packets.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 40

MILITARY AD-HOC NETWORKS

Ad-hoc networks for soldiers on a mission, or first-responders.

The exchange of gossip can populate a map showing friendly forces,
hostiles, what was searched, what still needs to be searched, etc.

Downside: WiFi devices emitted signals that can be seen with night-vision
scopes or similar hardware.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 41

CONCLUSIONS?

Gossip is a mature and effective technique.

It works very well for robustly propagating system monitoring information
at constant load and with guarantees that the load won’t spike.

Overcomes even extreme conditions. But slow, and if misused, is as
capable of malfunctioning as any other protocol!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 42

	CS5412/Lecture 12�Gossip Protocols
	Gossip 101
	Key aspects to the concept
	Notice that gossip has fixed peak load!
	Gossip spreads slowly at first, then faster
	Easy to work with
	Bimodal Multicast
	What’s the cost of an IP multicast?
	Making Bimodal Multicast reliable
	Making Bimodal Multicast reliable
	Making Bimodal Multicast reliable
	This makes it “bimodal”
	Experimental findings
	Optimizations
	lpbcast variation (Kermarrec, Guerraoui)
	Speculation... about speed
	Astrolabe
	Astrolabe is a flexible monitoring overlay
	Astrolabe in a single domain
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	Observations
	Big systems…
	Scaling up… and up…
	Astrolabe builds a hierarchy using a P2P protocol that “assembles the puzzle” without any servers
	Large scale: “fake” regions
	Hierarchy is virtual… data is replicated
	Hierarchy is virtual… data is replicated
	Worst-case load?
	Who uses Astrolabe?
	Example of overload handling
	Idea that one company had
	World’s worst aggregation tree!
	What went wrong?
	Insight: Two kinds of shape
	Information space perspective
	Is gossip used much today?
	Famous Tale of Woe
	Swarm computing
	Military ad-hoc networks
	Conclusions?

