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Data Analysis

Data processing iIs growing very fast compared to the
hardware acceleration.

1. Volume
2. Complexity




Spark RDDs

> Spark uses Resilient Distributed Datasets (RDDs) as a core
structure.

> Word Count Example (Scala):

val textRDD = sc.textFile("hdfs://..." y—————p
val flatMapRDD = textRDD.flatMap(line => line.split(" "

val mapRDD = flatMapRDD.map(word => (word, 1))

val counts = mapRDD. reduceByKey(_\
counts.saveAsTextFile("hdfs://.




Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ + )

Triggers execution




Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution
- Needs result of operation

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

=

No input RDDs

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution
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- -

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

“Hello World!”’
“Hello Ithaca”

Provide results

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

[“Hello”,”World”,
“Hello”, “Ithaca”]

val counts = mapRDD.reduceByKey(_ + )




Lineage of RDDs and Lazy Execution

al counts = mapRDD.reduceByKey(_ + )

[(“Hello”,1),("World”,1),
(“Hello”,1),(*Ithaca”,1)]




Lineage of RDDs and Lazy Execution

{*Hello’:2,”World”:1,
“Ithaca”:1}

val counts = mapRDD.reduceByKey( ‘_!




Dataflow - Logical Plan (Operations)

Input




Dataflow - Execution Plan (Tasks)




Why caching in Spark Is essential?

1. Cache intermediate
results

2. Avoid re-execution of
operations.

3. Save mostly CPU-
cycles instead of 1/0.




Multiple choices for of caching

NONE (Default)
MEMORY_ONLY
MEMORY_ONLY_ SER
MEMORY_AND_ DISK
MEMORY_AND_ DISK_SER
DISK_ONLY
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User decides what to cache in Spark

Users have to define what they want to cache by using
cache() or persist() keywords after RDD.

1. Static analysis for what to cache is harder than
traditional cases. Instead of caching only initial data,
Spark has the ability to cache intermediate results, too.

2. Multiple choices about where to cache complicate things
(Memory, SSD, Disk, etc.).

3. Caching might lead to worse results than simply re-executing
(especially with SSD, Disks, Serialization).




Eviction Policy

> Spark uses LRU for default eviction policy. Unlike selection
about what to cache, eviction Is automatic.

> However, classic eviction policies do not exploit structure
of the graph.




Why LRU Is not so good?
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Experimental Study on Spark Bench (15
jobs)
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LRC: Dependency-Aware Cache Management
for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief



Definition (Reference Count):

For each data block b, the reference count is define as the
number of child blocks that are derived from b, but have not
yet been computed.




LRC: Least Reference Count
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LRC: Least Reference Count

» Unused blocks with zero active references are evicted.
> Reference count is a better indicator for caching.
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Solution - Architecture
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Problem - Is this enough?

Task 1 .| Block cached in memory
I Elock stored on disk

% [ ] Block tobe computed

Task 2

Insert




Problem - Peer Dependencies

\ cached, then B; results
should not be cached and

\ vice-versa.
» Latency will remain the
% : same if A; and B; results

zip » If results of A; are not
ROD

ROD B

have similar size even If
we cache one of them (the
other is going to be the
bottleneck.
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Definition (Effective Reference Count):

Let block b be referenced by task t. We say this reference is
effective if task t’s dependent blocks, if computed, are all

cached in memory.




Solution - LERC
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Experiments - Platform and Setting

> Amazon EC2
> Cluster with 20 nodes of type m4.large
> 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor
> 8 GB memory
> Zip application
> 10 different independent jobs
> 100 A blocks and 100 B blocks that are zipped together
> 8 GB total size




Experiments - Performance
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Experiments - Overall Cache Hit
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Experiments - Effective Cache Hit
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Temporal Caching
[Work in Progress]

Theodoros Gkountouvas, Weijia Song, Haoze Wu, Ken Birman




Time-Series Data

> Timestamped Data
> Large amount
> High frequency
> Temporal Queries
> Sophisticated queries (ML, Optimization)
> Can be divided to:

> Fixed Temporal Queries

> Sliding Temporal Queries
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Fixed Temporal Query -
Example




Fixed Temporal Query - Explanation

Space

Traffic Current
Day Time

Time




Fixed Temporal Query - Explanation

Space

Traffic Current
Day Time

Time




Sliding Temp

[IEEE TIST,2015,Wang]

oral Query - Example

. CARNEGIE HILL
¥} Gentral Park

o  Walking Tours
- Manhattan

ENOX HILL

Fell

(i) Jazz On The Park Hostel

6,%&
INHATTAN S

<
ol

MELROSE

£y

"o
b‘i‘z , S
2

1) Sylvia's Restaur;

TPORT MORRIS

EAST HARLEM

$

?fﬂ.
/3
&

(o huei)

g Bay e

HUNTS POINT;

e

= o S

H LY.l |
Full map view £3 d

CLASON POINT




Sliding Temporal Query - Explanation

Org(LaGuardia)
Dest(Manhattan)

Space

Current Time  Current
- 1 Week Time

Time




Sliding Temporal Query - Explanation

Org(LaGuardia)
Dest(Manhattan)

Space

Current Time  Current
- 1 Week Time

Time




ARIMA for Time-Series Data

A
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> Generic model for making predictions for time-series
data.

> Trip Estimation application we saw before uses ARIMA to
make the prediction. To date, it Is one of the most
accurate approaches for this type of prediction.

> ARIMA predictions make by construction sliding temporal
gueries to the underlying data.




Temporal Caching

» Claim : Traditional cache eviction techniques (LRU,LFU)
are unable to capture the nature of Sliding Temporal
Queries.

> Question : Can we devise better cache eviction policies
for Sliding Temporal Queries?




LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Counting References
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LFU - Sliding Temporal Queries

We calculate:

A - w—

_ rc(rid, wt)
rr(rid, wt) = :

200 = nrQueries

=== lo.6 We normalize:

:E‘ i - 10.5

© 100

nrr(rid, wt) =
rr(rid, wt)

maxn-dr,wt,{rr(rid’, wt')}

19)an 2017
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Count References In Relative Timeline

> Pin current time as a constant time point (no shift).

> Sliding temporal queries will access data that is identified
by constant time now. For our previous example we would
access data at time:

Current Time - 1 Week
no matter when we make the query.

> Effectively, sliding temporal queries look like fixed
gueries for the relative timeline now.




Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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Counting References on Relative Timeline
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LFU on Relative Timeline -
Sliding Temporal Queries

We calculate:
rc(rid, wt)

nrQueries

rr(rid,wt) =

We normalize:

nrr(rid, wt) =
rr(rid, wt)

maxn-dr,wt,{rr(rid’, wt')}
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Evaluation
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Evaluation
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Future Work-Dataflow Cache for Time-
Series Data.




Questions
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