
Caching for Data 
Analysis

Ken Birman, Theo Gkountouvas



Data Analysis

Data processing is growing very fast compared to the 
hardware acceleration.

1. Volume

2. Complexity



Spark RDDs

 Spark uses Resilient Distributed Datasets (RDDs) as a core 
structure.

 Word Count Example (Scala):
val textRDD = sc.textFile("hdfs://...")

val flatMapRDD = textRDD.flatMap(line => line.split(" "))

val mapRDD = flatMapRDD.map(word => (word, 1))

val counts = mapRDD.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textRDD
Input RDD(s): -
Operation: readFile

mapRDD
Input RDD(s): flatMapRDD
Operation: map



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Triggers execution



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Needs results of operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Has input RDDs



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Needs result of operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

No input RDDs



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Execute operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Provide results

“Hello World!”
“Hello Ithaca”



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

[“Hello”,”World”,
“Hello”, “Ithaca”]



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

[(“Hello”,1),(”World”,1),
(“Hello”,1),(“Ithaca”,1)]



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

{“Hello”:2,”World”:1,
“Ithaca”:1}



Dataflow – Logical Plan (Operations)

map

join filter

map

filterInput

Input

Output



Dataflow – Execution Plan (Tasks)

map filter

filtermap

join

join

join

filter

filter

filter

map

map

16



Why caching in Spark is essential?

count

mapfilter

reduce

1

22 11

1

1. Cache intermediate 
results

2. Avoid re-execution of 
operations.

3. Save mostly CPU-
cycles instead of I/O.



Multiple choices for of caching

 NONE (Default)

 MEMORY_ONLY

 MEMORY_ONLY_SER

 MEMORY_AND_DISK

 MEMORY_AND_DISK_SER

 DISK_ONLY

 …



User decides what to cache in Spark

Users have to define what they want to cache by using 
cache() or persist() keywords after RDD.

1. Static analysis for what to cache is harder than 
traditional cases. Instead of caching only initial data, 
Spark has the ability to cache intermediate results, too.

2. Multiple choices about where to cache complicate things 
(Memory, SSD, Disk, etc.).

3. Caching might lead to worse results than simply re-executing 
(especially with SSD, Disks, Serialization).



Eviction Policy

 Spark uses LRU for default eviction policy. Unlike selection 
about what to cache, eviction is automatic.

 However, classic eviction policies do not exploit structure 
of the graph.



Why LRU is not so good?



Experimental Study on Spark Bench (15 
jobs)



LRC: Dependency-Aware Cache Management
for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief



Definition (Reference Count):

For each data block b, the reference count is define as the 
number of child blocks that are derived from b, but have not 
yet been computed.

24



LRC: Least Reference Count



LRC: Least Reference Count
 Unused blocks with zero active references are evicted.

 Reference count is a better indicator for caching.

26



Solution - Architecture

27



Problem – Is this enough?

28



Problem – Peer Dependencies

29

 If results of 𝐴𝐴𝑖𝑖 are not 
cached, then 𝐵𝐵𝑖𝑖 results 
should not be cached and 
vice-versa.

Latency will remain the 
same if 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 results 
have similar size even if 
we cache one of them (the 
other is going to be the 
bottleneck.



Definition (Effective Reference Count):

Let block 𝑏𝑏 be referenced by task 𝑡𝑡. We say this reference is 
effective if task 𝑡𝑡’s dependent blocks, if computed, are all 
cached in memory.

30



Solution - LERC

31



Experiments – Platform and Setting

 Amazon EC2
 Cluster with 20 nodes of type m4.large

 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor

 8 GB memory

 Zip application
 10 different independent jobs

 100 A blocks and 100 B blocks that are zipped together

 8 GB total size

32



Experiments - Performance

33



Experiments – Overall Cache Hit

34



Experiments – Effective Cache Hit

35



Temporal Caching
[Work in Progress]

Theodoros Gkountouvas, Weijia Song, Haoze Wu, Ken Birman



Time-Series Data

 Timestamped Data
 Large amount 

 High frequency

 Temporal Queries
 Sophisticated queries (ML, Optimization)

 Can be divided to:

 Fixed Temporal Queries

 Sliding Temporal Queries

37



Example – NYC taxi data
38



Fixed Temporal Query -
Example

39



Fixed Temporal Query - Explanation

Traffic
Day

Current
Time

Sp
ac

e

Time 40



Fixed Temporal Query - Explanation

Traffic
Day

Current
Time

Sp
ac

e

Time 41



Sliding Temporal Query - Example

42

[IEEE TIST,2015,Wang]



Sliding Temporal Query - Explanation

Current TIme
- 1 Week

Current
Time

Sp
ac

e

Time

Org(LaGuardia)
Dest(Manhattan)

43



Sliding Temporal Query - Explanation

Current Time
- 1 Week

Current
Time

Sp
ac

e

Time

Org(LaGuardia)
Dest(Manhattan)

44



ARIMA for Time-Series Data

ŷt = μ + ϕ1 yt-1 +…+ ϕp yt-p - θ1et-1 -…- θqet-q

 Generic model for making predictions for time-series 
data.

 Trip Estimation application we saw before uses ARIMA to 
make the prediction. To date, it is one of the most 
accurate approaches for this type of prediction.

 ARIMA predictions make by construction sliding temporal 
queries to the underlying data.



Temporal Caching

 Claim : Traditional cache eviction techniques (LRU,LFU) 
are unable to capture the nature of Sliding Temporal 
Queries.

 Question : Can we devise better cache eviction policies 
for Sliding Temporal Queries?

46



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

47



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

48



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0

49



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0

50



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

51



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

52



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:1 RC:0

53



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:0

54



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:0

55



LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:1

56



LFU – Sliding Temporal Queries

We calculate:

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤) =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

We normalize:

𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤 =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤)

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑑𝑑′,𝑤𝑤𝑤𝑤𝑤{𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑑𝑑′,𝑤𝑤𝑡𝑡′)}

57



Count References in Relative Timeline

 Pin current time as a constant time point (no shift).

 Sliding temporal queries will access data that is identified 
by constant time now. For our previous example we would 
access data at time:

Current Time – 1 Week

no matter when we make the query.

 Effectively, sliding temporal queries look like fixed 
queries for the relative timeline now.



Counting References on Relative Timeline

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

59



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

60



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

61



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

62



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

63



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

64



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

65



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

66



21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:3 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline

67



LFU on Relative Timeline –
Sliding Temporal Queries

We calculate:

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤) =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

We normalize:

𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤 =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤)

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑑𝑑′,𝑤𝑤𝑤𝑤𝑤{𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑑𝑑′,𝑤𝑤𝑡𝑡′)}

68



Evaluation



Evaluation



Future Work-Dataflow Cache for Time-
Series Data.

71

src

O1

O2

O3 sink

Cache



Questions

72


	Caching for Data Analysis
	Data Analysis
	Spark RDDs
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Dataflow – Logical Plan (Operations)
	Dataflow – Execution Plan (Tasks)
	Why caching in Spark is essential?
	Multiple choices for of caching
	User decides what to cache in Spark
	Eviction Policy
	Why LRU is not so good?
	Experimental Study on Spark Bench (15 jobs)
	LRC: Dependency-Aware Cache Management�for Data Analytics Clusters�
	Slide Number 24
	LRC: Least Reference Count
	LRC: Least Reference Count
	Solution - Architecture
	Problem – Is this enough?
	Problem – Peer Dependencies
	Slide Number 30
	Solution - LERC
	Experiments – Platform and Setting
	Experiments - Performance
	Experiments – Overall Cache Hit
	Experiments – Effective Cache Hit
	Temporal Caching�[Work in Progress]
	Time-Series Data
	Example – NYC taxi data
	Fixed Temporal Query - Example
	Fixed Temporal Query - Explanation
	Fixed Temporal Query - Explanation
	Sliding Temporal Query - Example
	Sliding Temporal Query - Explanation
	Sliding Temporal Query - Explanation
	ARIMA for Time-Series Data
	Temporal Caching	
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Sliding Temporal Queries
	Count References in Relative Timeline
	Counting References on Relative Timeline
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	LFU on Relative Timeline – Sliding Temporal Queries
	Evaluation
	Evaluation
	Future Work-Dataflow Cache for Time-Series Data.
	Questions

