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Data Analysis

Data processing is growing very fast compared to the 
hardware acceleration.

1. Volume

2. Complexity



Spark RDDs

 Spark uses Resilient Distributed Datasets (RDDs) as a core 
structure.

 Word Count Example (Scala):
val textRDD = sc.textFile("hdfs://...")

val flatMapRDD = textRDD.flatMap(line => line.split(" "))

val mapRDD = flatMapRDD.map(word => (word, 1))

val counts = mapRDD.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textRDD
Input RDD(s): -
Operation: readFile

mapRDD
Input RDD(s): flatMapRDD
Operation: map



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Triggers execution



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Needs results of operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Has input RDDs



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Needs result of operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

No input RDDs



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Execute operation



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

Provide results

“Hello World!”
“Hello Ithaca”



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

[“Hello”,”World”,
“Hello”, “Ithaca”]



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

[(“Hello”,1),(”World”,1),
(“Hello”,1),(“Ithaca”,1)]



Lineage of RDDs and Lazy Execution
textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)

{“Hello”:2,”World”:1,
“Ithaca”:1}



Dataflow – Logical Plan (Operations)

map

join filter

map

filterInput

Input

Output



Dataflow – Execution Plan (Tasks)

map filter

filtermap

join

join

join

filter

filter

filter

map

map
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Why caching in Spark is essential?

count

mapfilter

reduce

1

22 11

1

1. Cache intermediate 
results

2. Avoid re-execution of 
operations.

3. Save mostly CPU-
cycles instead of I/O.



Multiple choices for of caching

 NONE (Default)

 MEMORY_ONLY

 MEMORY_ONLY_SER

 MEMORY_AND_DISK

 MEMORY_AND_DISK_SER

 DISK_ONLY

 …



User decides what to cache in Spark

Users have to define what they want to cache by using 
cache() or persist() keywords after RDD.

1. Static analysis for what to cache is harder than 
traditional cases. Instead of caching only initial data, 
Spark has the ability to cache intermediate results, too.

2. Multiple choices about where to cache complicate things 
(Memory, SSD, Disk, etc.).

3. Caching might lead to worse results than simply re-executing 
(especially with SSD, Disks, Serialization).



Eviction Policy

 Spark uses LRU for default eviction policy. Unlike selection 
about what to cache, eviction is automatic.

 However, classic eviction policies do not exploit structure 
of the graph.



Why LRU is not so good?



Experimental Study on Spark Bench (15 
jobs)



LRC: Dependency-Aware Cache Management
for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief



Definition (Reference Count):

For each data block b, the reference count is define as the 
number of child blocks that are derived from b, but have not 
yet been computed.
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LRC: Least Reference Count



LRC: Least Reference Count
 Unused blocks with zero active references are evicted.

 Reference count is a better indicator for caching.
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Solution - Architecture
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Problem – Is this enough?
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Problem – Peer Dependencies

29

 If results of 𝐴𝐴𝑖𝑖 are not 
cached, then 𝐵𝐵𝑖𝑖 results 
should not be cached and 
vice-versa.

Latency will remain the 
same if 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 results 
have similar size even if 
we cache one of them (the 
other is going to be the 
bottleneck.



Definition (Effective Reference Count):

Let block 𝑏𝑏 be referenced by task 𝑡𝑡. We say this reference is 
effective if task 𝑡𝑡’s dependent blocks, if computed, are all 
cached in memory.
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Solution - LERC
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Experiments – Platform and Setting

 Amazon EC2
 Cluster with 20 nodes of type m4.large

 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor

 8 GB memory

 Zip application
 10 different independent jobs

 100 A blocks and 100 B blocks that are zipped together

 8 GB total size
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Experiments - Performance
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Experiments – Overall Cache Hit
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Experiments – Effective Cache Hit
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Temporal Caching
[Work in Progress]

Theodoros Gkountouvas, Weijia Song, Haoze Wu, Ken Birman



Time-Series Data

 Timestamped Data
 Large amount 

 High frequency

 Temporal Queries
 Sophisticated queries (ML, Optimization)

 Can be divided to:

 Fixed Temporal Queries

 Sliding Temporal Queries
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Example – NYC taxi data
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Fixed Temporal Query -
Example
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Fixed Temporal Query - Explanation

Traffic
Day

Current
Time

Sp
ac

e

Time 40



Fixed Temporal Query - Explanation

Traffic
Day

Current
Time

Sp
ac

e

Time 41



Sliding Temporal Query - Example
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[IEEE TIST,2015,Wang]



Sliding Temporal Query - Explanation

Current TIme
- 1 Week

Current
Time

Sp
ac

e

Time

Org(LaGuardia)
Dest(Manhattan)
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Sliding Temporal Query - Explanation

Current Time
- 1 Week

Current
Time

Sp
ac

e

Time

Org(LaGuardia)
Dest(Manhattan)
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ARIMA for Time-Series Data

ŷt = μ + ϕ1 yt-1 +…+ ϕp yt-p - θ1et-1 -…- θqet-q

 Generic model for making predictions for time-series 
data.

 Trip Estimation application we saw before uses ARIMA to 
make the prediction. To date, it is one of the most 
accurate approaches for this type of prediction.

 ARIMA predictions make by construction sliding temporal 
queries to the underlying data.



Temporal Caching

 Claim : Traditional cache eviction techniques (LRU,LFU) 
are unable to capture the nature of Sliding Temporal 
Queries.

 Question : Can we devise better cache eviction policies 
for Sliding Temporal Queries?
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:1 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:0
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LFU – Counting References

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:1 RC:1 RC:1
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LFU – Sliding Temporal Queries

We calculate:

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡) =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡)
𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

We normalize:

𝑛𝑛𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡 =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡)

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑖𝑖𝑑𝑑′,𝑤𝑤𝑤𝑤𝑤{𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑤,𝑤𝑤𝑡𝑡𝑤)}
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Count References in Relative Timeline

 Pin current time as a constant time point (no shift).

 Sliding temporal queries will access data that is identified 
by constant time now. For our previous example we would 
access data at time:

Current Time – 1 Week

no matter when we make the query.

 Effectively, sliding temporal queries look like fixed 
queries for the relative timeline now.



Counting References on Relative Timeline

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:0 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
6-7AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:1 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
7-8AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:2 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM

28 Jan 2017
8-9AM

RC:3 RC:0 RC:0

curTime
-1 week

curTime
-1 week
+1 hour

curTime
-1 week
+2 hour

Counting References on Relative Timeline
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LFU on Relative Timeline –
Sliding Temporal Queries

We calculate:

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡) =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡)
𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

We normalize:

𝑛𝑛𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡 =
𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑡𝑡)

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑖𝑖𝑑𝑑′,𝑤𝑤𝑤𝑤𝑤{𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑤,𝑤𝑤𝑡𝑡𝑤)}
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Evaluation



Evaluation



Future Work-Dataflow Cache for Time-
Series Data.

71

src

O1

O2

O3 sink

Cache



Questions
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