Caching for Data
Analysis

Ken Birman, Theo Gkountouvas

Data Analysis

Data processing iIs growing very fast compared to the
hardware acceleration.

1. Volume
2. Complexity

Spark RDDs

> Spark uses Resilient Distributed Datasets (RDDs) as a core
structure.

> Word Count Example (Scala):

val textRDD = sc.textFile("hdfs://..." y—————p
val flatMapRDD = textRDD.flatMap(line => line.split(" "

val mapRDD = flatMapRDD.map(word => (word, 1))

val counts = mapRDD. reduceByKey(_\
counts.saveAsTextFile("hdfs://.

Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ +)

Triggers execution

Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution
- Needs result of operation

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

=

No input RDDs

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

=

- -

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

“Hello World!”’
“Hello Ithaca”

Provide results

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

[“Hello”,”World”,
“Hello”, “Ithaca”]

val counts = mapRDD.reduceByKey(_ +)

Lineage of RDDs and Lazy Execution

al counts = mapRDD.reduceByKey(_ +)

[(“Hello”,1),("World”,1),
(“Hello”,1),(*Ithaca”,1)]

Lineage of RDDs and Lazy Execution

{*Hello’:2,”World”:1,
“Ithaca”:1}

val counts = mapRDD.reduceByKey(‘_!

Dataflow - Logical Plan (Operations)

Input

Dataflow - Execution Plan (Tasks)

Why caching in Spark Is essential?

1. Cache intermediate
results

2. Avoid re-execution of
operations.

3. Save mostly CPU-
cycles instead of 1/0.

Multiple choices for of caching

NONE (Default)
MEMORY_ONLY
MEMORY_ONLY_ SER
MEMORY_AND_ DISK
MEMORY_AND_ DISK_SER
DISK_ONLY

v V VYV V V VYV VY

User decides what to cache in Spark

Users have to define what they want to cache by using
cache() or persist() keywords after RDD.

1. Static analysis for what to cache is harder than
traditional cases. Instead of caching only initial data,
Spark has the ability to cache intermediate results, too.

2. Multiple choices about where to cache complicate things
(Memory, SSD, Disk, etc.).

3. Caching might lead to worse results than simply re-executing
(especially with SSD, Disks, Serialization).

Eviction Policy

> Spark uses LRU for default eviction policy. Unlike selection
about what to cache, eviction Is automatic.

> However, classic eviction policies do not exploit structure
of the graph.

Why LRU Is not so good?

LA
I

Experimental Study on Spark Bench (15
jobs)

| Empirical CDF

0.8 //
. 0.6 Ve
3 —/

0.4 Ve

el
0.2 /‘_____. —
0
0 0.2 0.4 0.6 0.8 1

Percentage of Inactive Data in the Cached Data

LRC: Dependency-Aware Cache Management
for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief

Definition (Reference Count):

For each data block b, the reference count is define as the
number of child blocks that are derived from b, but have not
yet been computed.

LRC: Least Reference Count

LA

I

LRC: Least Reference Count

» Unused blocks with zero active references are evicted.
> Reference count is a better indicator for caching.

1
.....:f
'
!
o+
L
(]
o
B — Reference Count |
7 ==Recency
0.01-~ — - Frequency
20 40 60 80 100

Cache Priority Rank (Percentile)

Solution - Architecture

AppDAGAnalyzer DAGScheduler

p TobDAG
ppn,q P

.| BlockManager B CacheManager
'|MasterEndpoint | Reference Count Master

BlockManager || RDDMonitor *" BlockManager || RDDMonitor

Cache Cache

Executor J Executor

Problem - Is this enough?

Task 1 .| Block cached in memory
I Elock stored on disk

% [] Block tobe computed

Task 2

Insert

Problem - Peer Dependencies

\ cached, then B; results
should not be cached and

\ vice-versa.
» Latency will remain the
% : same if A; and B; results

zip » If results of A; are not
ROD

ROD B

have similar size even If
we cache one of them (the
other is going to be the
bottleneck.

¢ EE|E BE

Definition (Effective Reference Count):

Let block b be referenced by task t. We say this reference is
effective if task t’s dependent blocks, if computed, are all

cached in memory.

Solution - LERC

T

+——— DAGSchedul er

Reference ‘CV JobDAG |
PeerTracker

BlockManager "Jﬂl@g—”
g Dot Evicted Master

MasterEndpoint
Peer Profile
Update Effective|Reference Count
PeerTracker PeerTracker
BlockManager - BlockManager =
| RDDMonitor . RDDMoni tor
Cache Cache
Worker Worker

Experiments - Platform and Setting

> Amazon EC2
> Cluster with 20 nodes of type m4.large
> 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor
> 8 GB memory
> Zip application
> 10 different independent jobs
> 100 A blocks and 100 B blocks that are zipped together
> 8 GB total size

Experiments - Performance

I I I
|EEELRU [JLRC IE-ERC |
300

2.6 3.5 44 53 6.2 T

Cache Size (GB)

Runtime (s)
o [
2 =

2

A
=

=

Experiments - Overall Cache Hit

1

[EENLRU [JLRC BN LERC |
0.9

0.8 |

=
-

=)
T

rﬁ. -
T

Cache Hit Ratio
= = =
Ln

&
fad
T

=
b2

=

=

2.6 i5 44 5.3 6.2 T
Cache Size (GB)

Experiments - Effective Cache Hit

I I I
[1L.RU T LRC I 1ERC|

0.9

Effective Cache Hit Ratio
= = = = = = =
] Lad e L (=2 | = a]

=

=

2.6 3.5 4.4 53 6.2 7
Cache Size (GB)

Temporal Caching
[Work in Progress]

Theodoros Gkountouvas, Weijia Song, Haoze Wu, Ken Birman

Time-Series Data

> Timestamped Data
> Large amount
> High frequency
> Temporal Queries
> Sophisticated queries (ML, Optimization)
> Can be divided to:

> Fixed Temporal Queries

> Sliding Temporal Queries

S
KL

=N

i) “ll\‘
!

L
1.

e

Fixed Temporal Query -
Example

Fixed Temporal Query - Explanation

Space

Traffic Current
Day Time

Time

Fixed Temporal Query - Explanation

Space

Traffic Current
Day Time

Time

Sliding Temp

[IEEE TIST,2015,Wang]

oral Query - Example

. CARNEGIE HILL
¥} Gentral Park

o Walking Tours
- Manhattan

ENOX HILL

Fell

(i) Jazz On The Park Hostel

6,%&
INHATTAN S

<
ol

MELROSE

£y

"o
b‘i‘z , S
2

1) Sylvia's Restaur;

TPORT MORRIS

EAST HARLEM

$

?fﬂ.
/3
&

(o huei)

g Bay e

HUNTS POINT;

e

= o S

H LY.l |
Full map view £3 d

CLASON POINT

Sliding Temporal Query - Explanation

Org(LaGuardia)
Dest(Manhattan)

Space

Current Time Current
- 1 Week Time

Time

Sliding Temporal Query - Explanation

Org(LaGuardia)
Dest(Manhattan)

Space

Current Time Current
- 1 Week Time

Time

ARIMA for Time-Series Data

A

Yi = H+Y @1 Ye1 Tt @y Vip - 0.6¢1 - eqet-q

> Generic model for making predictions for time-series
data.

> Trip Estimation application we saw before uses ARIMA to
make the prediction. To date, it Is one of the most
accurate approaches for this type of prediction.

> ARIMA predictions make by construction sliding temporal
gueries to the underlying data.

Temporal Caching

» Claim : Traditional cache eviction techniques (LRU,LFU)
are unable to capture the nature of Sliding Temporal
Queries.

> Question : Can we devise better cache eviction policies
for Sliding Temporal Queries?

LFU - Counting References

\v') 28Jan 2017
,os 6-7AM

RC:0 RC:0 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

\v') 28Jan 2017
,os 6-7AM

RC:0 RC:0 RC:0
A A A
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

\v') 28Jan 2017
,os 6-7AM

RC:1 RC:0 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

\v') 28Jan 2017
,os 6-7AM

RC:1 RC:0 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

ya I ~ 7'8AM
RC:1 RC:0 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

ya I ~ 7'8AM
RC:1 RC:0 RC:0
A A A
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

ya I ~ 7'8AM
RC:1 RC:1 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

D 8-9AM
RC:1 RC:1 RC:0
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

D 8-9AM
RC:1 RC:1 RC:0
A A A
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Counting References

V' 28 Jan 2017

D 8-9AM
RC:1 RC:1 RC:1
21 Jan 2017 21 Jan 2017 21 Jan 2017

6-7AM 7-8AM 8-9AM

LFU - Sliding Temporal Queries

We calculate:

A - w—

_ rc(rid, wt)
rr(rid, wt) = :

200 = nrQueries

=== lo.6 We normalize:

:E‘ i - 10.5

© 100

nrr(rid, wt) =
rr(rid, wt)

maxn-dr,wt,{rr(rid’, wt')}

19)an 2017

21 Jarf 2017 28 Jan 2»‘:&17(‘]'(‘-l
Time(Hours)

Count References In Relative Timeline

> Pin current time as a constant time point (no shift).

> Sliding temporal queries will access data that is identified
by constant time now. For our previous example we would
access data at time:

Current Time - 1 Week
no matter when we make the query.

> Effectively, sliding temporal queries look like fixed
gueries for the relative timeline now.

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

D 6-7AM
curTime curTime
curTime -1 week -1 week
-1 week +1 hour +2 hour
 RC:0 RC:0

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

D 6-7AM
curTime curTime
curTime -1 week -1 week
-1 week +1 hour +2 hour
 RC:0 RC:0

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

D 6-7AM
curTime curTime
curTime -1 week -1 week
-1 week +1 hour +2 hour
 RC:0 RC:0

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

p 2 I ~ 7'8AM
curTime curTime
curTime -1 week -1 week

-1 week +1 hour +2 hour

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

-

\v') 28Jan 2017

p 2 I ~ 7'8AM
curTime curTime
curTime -1 week -1 week
-1 week +1 hour +2 hour
RC:1 RC:0 RC:0

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

p 2 I ~ 7'8AM
curTime curTime
curTime -1 week -1 week

-1 week +1 hour +2 hour

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

D 8-9AM
curTime curTime
curTime -1 week -1 week

-1 week +1 hour +2 hour

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

28 Jan 2017
8-9AM
curTime curTime
curTime -1 week -1 week
-1 week +1 hour +2 hour
RC:2 RC:0 RC:0

I
I

M~

é é
21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

Counting References on Relative Timeline

‘\,’_ 28 Jan 2017

D 8-9AM
curTime curTime
curTime -1 week -1 week

-1 week +1 hour +2 hour

21 Jan 2017 21 Jan 2017 21 Jan 2017
6-7AM 7-8AM 8-9AM

LFU on Relative Timeline -
Sliding Temporal Queries

We calculate:
rc(rid, wt)

nrQueries

rr(rid,wt) =

We normalize:

nrr(rid, wt) =
rr(rid, wt)

maxn-dr,wt,{rr(rid’, wt')}

0.
92 weeks -1 Weelk cur time
Time(hours)

Evaluation

Hit Ratio (%)
w EnN un
o o o

Warm Up: 168 hours, Period: 60 days, 2247 GAccesses

..

f 5 | ; — LRU E
""""" T e LFU
| : | : = LFU rel

--

0 10 20

30 40 50 60 70
Cache Size / Workload Size (%)

Evaluation

Cache Size 4096 KRecords

33y s ey
2 fWM;/WuMW
T 40 RU |

0 100 200 300 400 500 600 700
Time (hours)

Future Work-Dataflow Cache for Time-
Series Data.

Questions

	Caching for Data Analysis
	Data Analysis
	Spark RDDs
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Lineage of RDDs and Lazy Execution
	Dataflow – Logical Plan (Operations)
	Dataflow – Execution Plan (Tasks)
	Why caching in Spark is essential?
	Multiple choices for of caching
	User decides what to cache in Spark
	Eviction Policy
	Why LRU is not so good?
	Experimental Study on Spark Bench (15 jobs)
	LRC: Dependency-Aware Cache Management�for Data Analytics Clusters�
	Slide Number 24
	LRC: Least Reference Count
	LRC: Least Reference Count
	Solution - Architecture
	Problem – Is this enough?
	Problem – Peer Dependencies
	Slide Number 30
	Solution - LERC
	Experiments – Platform and Setting
	Experiments - Performance
	Experiments – Overall Cache Hit
	Experiments – Effective Cache Hit
	Temporal Caching�[Work in Progress]
	Time-Series Data
	Example – NYC taxi data
	Fixed Temporal Query - Example
	Fixed Temporal Query - Explanation
	Fixed Temporal Query - Explanation
	Sliding Temporal Query - Example
	Sliding Temporal Query - Explanation
	Sliding Temporal Query - Explanation
	ARIMA for Time-Series Data
	Temporal Caching	
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Counting References
	LFU – Sliding Temporal Queries
	Count References in Relative Timeline
	Counting References on Relative Timeline
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	LFU on Relative Timeline – Sliding Temporal Queries
	Evaluation
	Evaluation
	Future Work-Dataflow Cache for Time-Series Data.
	Questions

