Shuffling: A Framework for Lock Contention Aware Thread
Scheduling for Multicore Multiprocessor Systems

Kishore Kumar Pusukuri

Rajiv Gupta

Laxmi N. Bhuyan

Department of Computer Science and Engineering
University of California, Riverside
. Riverside, USA 92521
{kishore, gupta, bhuyan}@cs.ucr.edu

ABSTRACT

On a cache-coherent multicore multiprocessor system, the
performance of a multithreaded application with high lock
contention is very sensitive to the distribution of application
threads across multiple processors (or Sockets). This is
because the distribution of threads impacts the frequency of
lock transfers between Sockets, which in turn impacts the
frequency of last-level cache (LLC) misses that lie on the
critical path of execution. Since the latency of a LLC miss is
high, an increase of LLC misses on the critical path increases
both lock acquisition latency and critical section processing
time. However, thread schedulers for operating systems, such
as Solaris and Linux, are oblivious of the lock contention
among multiple threads belonging to an application and
therefore fail to deliver high performance for multithreaded
applications.

To alleviate the above problem, in this paper, we propose
a scheduling framework called Shuffling, which migrates
threads of a multithreaded program across Sockets so that
threads seeking locks are more likely to find the locks on
the same Socket. Shuffling reduces the time threads spend
on acquiring locks and speeds up the execution of shared
data accesses in the critical section, ultimately reducing the
execution time of the application. We have implemented
Shuffling on a 64-core Supermicro server running Oracle

Solaris 11 and evaluated it using a wide variety of 20
multithreaded programs with high lock contention. Our
experiments show that Shuffling achieves up to 54% reduction
in execution time and an average reduction of 13%. Moreover
it does not require any changes to the application source
code or the OS kernel.

Categories and Subject Descriptors

D.4.1 [Process Management|: Scheduling
Keywords

Multicore; scheduling; thread migration; lock contention;
last-level cache misses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT’14, August 24-27, 2014, Edmonton, AB, Canada.

Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628074.

1 Introduction

The cache-coherent multicore multiprocessing architecture
was designed to overcome the scalability limits of the sym-
metric multiprocessing architecture. Today, multicore mul-
tiprocessor (or multi-socket) systems with a large number
of cores are ubiquitous [4, 5, 6]. For applications with high
degree of parallelism it is often necessary to create large
number of threads and distribute them across the multi-
ple multicore Sockets to utilize all the available cores [32].
However, shared-memory multithreaded applications often
exhibit high lock times (i.e., > 5%) due to frequent synchro-
nization of threads [20, 28]. The lock time is defined as the
percentage of elapsed time a process has spent waiting for
lock operations in user space [26]. Figure 1(a) presents the
lock times of 20 multithreaded programs including SPEC
jbb2005 [41], PBZIP2 [30], and programs from PARSEC [2],
SPEC OMP2001 [41], and SPLASH2 [49] suites. As we can see,
the lock times for these programs are quite high.

On a multicore multisocket system, the performance of
a multithreaded application with high lock contention is
highly sensitive to the distribution of threads across Sockets
(or multicore processors). In this paper, we demonstrate
that the time spent on acquiring locks, as experienced by
competing threads, can increase greatly depending upon the
Sockets on which they are scheduled. When a lock is acquired
by a thread, the time spent on acquiring it is longer if lock
currently resides in a cache line of a remote Socket as opposed
to the Socket on which the acquiring thread is running. In
addition, once the thread acquires the lock, access to shared
data protected by the lock is also likely to trigger LLC misses.
This causes the thread to spend longer time in the critical
section. When the competing threads of a multithreaded
application are distributed across multiple Sockets, the above
situation arises often and it increases lock transfers between
Sockets. Frequent lock transfers between Sockets significantly
increases long latency LLC misses that fall on the critical path
of execution. Moreover, the larger the number of threads,
the higher is the lock contention problem which causes LLC
misses associated with inter-Socket transfer of locks and the
shared data they protect. As shown in Figure 1(b), most of
the programs exhibit high LLC miss rates (i.e., > 3 MPKI).
LLC miss rate is defined as the last level cache misses per
thousand instructions (MPKI). Since the latency of LLC
miss is high, the increase in LLC misses on the critical path
increases both lock acquisition latency and critical section
processing time, thereby leading to significant performance
degradation.

PARSEC: bodytrack (BT), fluidanimate (FA), facesim (FS), streamcluster (SC); SPEC OMP2001: applu (AL), ammp (AM),

apsi (AS), equake (EQ), fma3d (F

M), gafort (GA), galgel (GL), mgrid (MG), swim (SM), wupwise (WW

); SPLASH2: ocean

(OC), raytrace (RT), radix (RX), volrend (VL); PBZIP2 (PB); SPEC jbb2005 (JB).

100

0| I ||I|| ||IIII I I
F

ASSCALAMASEQFMGAGLM OCRTRXVLP
Program

(a) Lock times.

Lock Time (%)
o ~

n
o

=25
o
220*
4—-15*
D:
n10-
L2
=5
e LT AN
—o- —- o _
BT FA FS SC AL AM AS EQ FM GA GL MG SM OCRTRXVLPB

Program
(b) LLC Miss Rate.

Figure 1: We studied 33 programs including SPEC jbb2005, PBZIP2, and program from PARSEC, SPEC OMP2001, and SPLASH2
suites. We thoroughly evaluate programs with high lock times (i.e., > 5%). Among the 33 programs, the above 20 programs
have high lock times. Therefore, we considered these 20 programs throughout this paper. Lock times and LLC miss rates of
these 20 programs are shown here. The programs are run with 64 threads on 64 cores spread across 4 Sockets. The description

of the machine is shown in Figure 2.

Our Solution -- Shuffling. To address the above problem,
we propose a scheduling framework called Shuffling, which
aims to reduce the variance in the lock arrival times of the
threads scheduled on the same Socket. The lock arrival times
are the times at which threads arrive at the critical section
just before they successfully acquire the lock. By scheduling
threads whose arrival times are clustered in a small time
interval so that they can all get the lock without losing the
lock to a thread on another Socket. Thus Shuffling ensures
that once a thread releases the lock, it is highly likely that
another thread on the same Socket will successfully acquire
the lock, and LLC misses will be avoided. Consequently,
Shuffling reduces the lock acquisition time and speeds up
the execution of shared data accesses in the critical section,
ultimately reducing the execution time of the application.

We implemented Shuffling on a 64-core, 4-Socket machine
running Oracle Solaris 11 and evaluated it using a large
set of multithreaded programs. The results show that for
20 programs with high lock times Shuffling achieves up to
54% (average 13%) reduction in execution time. For the
remaining 13 programs with very low lock times, the change
in performance was insignificant (within 0.5%). Moreover,
Shuffling outperforms the state-of-the-art cache contention
management technique [3, 52]. Finally, Shuffling is an attrac-
tive approach because its overhead is negligible and it does
not require any changes to the application source code or the
OS kernel.

The key contributions of our work are as follows:

e We identify the important reasons for why modern OSs
fail to achieve high performance for multithreaded appli-
cations with high lock contention running on multicore
multiprocessor systems.

e We develop a scheduling framework called Shuffling
which orchestrates migration of threads between Sock-
ets with the goal of simultaneously maintaining load
balance and reducing lock transfers between Sockets to
reduce LLC misses on the critical path.

The rest of the paper is organized as follows. In Section 2
we show why distribution of threads impacts lock transfers
between Sockets. In Section 3 we provide design and imple-
mentation of Shuffling. In Section 4, we evaluate Shuffling
with a wide variety of multithreaded programs. Related work
and conclusions are given in Sections 5 and 6.

Supermicro 64-core server:

4 x 16-Core 64-bit AMD Opteron’ 6272 (2.1 GHz);
L1/L2: 48 KB / 1000 KB; Private to a core;

L3: 16 MB shared by 16 cores; RAM: 64 GB;

Memory latency (local : remote) = (128 nsec : 201 nsec);

Operating System: Oracle Solaris 1™

DRAM | Socket (3) Socket (2) |~ DRAM

DRAM (= Socket (0) Socket (1) [==|DRAM

[w | [wo |

HyperTransport

Memory Bus

Figure 2: Our 64-core machine has four 16-core Sockets (or
Processors). We interchangeably use Socket and Processor.

2 Lock Contention and LLC Misses

Although thread schedulers of modern operating systems,
such as Solaris and Linux, are effective in scheduling multiple
single threaded programs, they fail to effectively schedule
threads of a multithreaded program on a cache-coherent
multiprocessor system. Since they do not distinguish be-
tween threads representing single threaded applications from
threads of a single multithreaded application, the decisions
made by these schedulers are oblivious to the lock contention
among the threads of a multithreaded program. Lock con-
tention results when multiple threads compete to acquire the
same lock. For example, consider a typical synchronization
where several threads compete for a lock to enter a critical
section in the Bodytrack (BT) [2] computer vision application
on the 64 core 4-Socket machine described in Figure 2.

BT is an Intel RMS workload which tracks a 3D pose of
a marker-less human body with multiple cameras through
an image sequence. BT has a persistent thread pool and
the main thread executes the program and sends a task
to the thread pool whenever it reaches a parallel kernel.
The program has three parallel kernels :1) Edge Detection;

// entry of worker thread function

// get a lock
ticket = loopTickets.getTicket();
while(ticket < GradientArgs.src->Height() - 2) {
for(i = ticket; i < GradientArgs.src->Height() -
2 && i < ticket + WORKUNIT_SIZE_GRADIENT;
i++) {
GradientMagThresholdPthread(i + 1, ...);
}
ticket = loopTickets.getTicket();

Figure 3: Code snippet around a parallel kernel of BT.

2) Calculate Particle Weights; and 3) Particle Resampling.
The parallel kernels use locks to distribute the work among
threads to dynamically balance the load. To understand
the effect of the distribution of threads across Sockets on
the performance, on our multicore system, we studied code
around the first parallel kernel Edge Detection. BT employs
a gradient based edge detection mask to find edges. The
result is compared against a threshold to eliminate spurious
edges. Edge detection is implemented in function Gradient-
MagThreshold and the code snippet around the function is
shown in Figure 3 [2].

Each worker thread of BT tries to acquire a lock so it can
enter the critical section. In the critical section the thread
runs GradientMagThreshold function in a loop. As expected,
lock contention increases with the number of threads. The
worker threads perform both read and write operations on
the shared data. This code involves a series of successful
(Acquire Lock; Ezecute Critical Section; Release Lock) operation
sequences that are performed by the participating threads.
The execution time of an operation sequence increases if LLC
misses occur when acquiring the lock and performing read
and write operations on the shared data.

2.1 The Cost of LLC Misses

If T(Acqi; Exec;; Rel;) denotes the time for the " success-
ful operation sequence, and there are a total of n threads
competing for the lock, then the total time is given by
S°m_ T(Acqi; Ewec;; Rel;). On a cache-coherent multiprocessor
machine, the time for each successful (Acquire; Exec; Release)
can vary significantly. Let us consider two consecutive opera-
tions (Acq;; Execs; Rel;) and (Acgit1; Execiq1; Reliq1) such that
they are performed by two threads located at Sockets Socket;
and Socket;+1 respectively. The time for the second operation
pair, i.e. T(Acqii1; Execii1; Rel;11) can vary as follows:

® T(Acqit1; Ezecit1; Reliy1) is low (Ti..,) when the threads
that perform operations (Acq;; Ezec;; Rel;) &
(Acgit1; Execit1; Rel;41) are located on the same Socket,
i.e. Socket; = Socket;11 because then LLC hits occur
when the lock, and the shared data it protects, are
accessed;

® T(Acqit1; Execit1; Relit1) is high (Thign) when the threads
that perform operations (Acq;; Exec;; Rel;) &
(Acqiy1; Execit1; Reli 1) are located on different Sockets,
i.e. Socket; # Socket;+1 because LLC misses occur when
the lock, and the shared data it protects, are accessed.

® Socket(0) @ Socket(1) B Socket(2) & Socket(3)

100
[} m <>
e © @ =m 2o o
o o %o B
75-
e g B
m (€] 5]
1S
o 50-) Q@ o
£
|_
@ ©
25- o
. ©
(6] e

o
0- @a a2 sma @ & AN M e
Thread ID

Figure 4: Lock arrival Times of the 64 threads of BT with
Solaris across all the four Sockets. DTrace [8] scripts were
used to collect the lock arrival times of 64 threads of BT be-
fore acquiring the lock in a 100 milliseconds interval. Threads
with the same symbol arrived on the same Socket.

The above variation is due to the high cost of lock transfer
between Sockets on a cache coherent multisocket system.
Our machine uses the MOESI cache coherency protocol [42].
In this protocol a cache line can be in one of five states:
Modified, Owned, Exclusive, Shared, and Invalid. Therefore,
following the execution of (Acg;; Exec;; Rel;), the cache line
containing the lock is in Modified state. If the Socket;;1 is
different from Socket;, then the cache line must be transferred
from Socket; to Socket;y1 when (Acq;t1; Execit1; Reliv1) is
executed.

2.2 High Frequency of LLC Misses and its Cause

Next, we show how often the above event sequences entail
overhead of Tiow VS. Thign. For a given number of threads,
the total number of successful (Acquire; Exec; Release) oper-
ations performed is the same. However, how often these
operations require Tj. and Thign overhead varies based on
the distribution of threads across the four Sockets. When
running BT with 64 threads on 64 cores across 4 Sockets with
the default Solaris scheduler, around 68% of the time lock
transfers between two Sockets take place. In other words,
Thigh cost must be paid for over 2/3”1 of the time with
the default Solaris scheduler. Therefore, with Solaris, high
overhead LLC misses happen frequently which degrades per-
formance as these LLC misses are on the critical path. LLC
miss has high latency, for example, it is 201 nanoseconds for
our machine. These high latency LLC misses on the critical
path significantly increase both lock acquisition latencies and
critical section processing times.

The frequent lock transfers between Sockets in multiproces-
sor system increases execution time of the critical path and
significantly degrades performance of multithreaded applica-
tions. This problem becomes very prominent for applications
with high lock contention. As Figure 1 shows, BT experi-
ences high lock contention. Its LLC miss rate is also high —
3.3 MPKI (Misses Per Thousand Instructions).

Next let us examine the reason for frequently encountered
LLC misses. Figure 4 shows the times (say lock arrival times)
at which threads arrive at the critical section just before they
successfully acquire the lock and execute the event sequence
(Acquire; Execute; Release). The x-axis plots thread ids and
the y-axis plots the corresponding lock arrival times. We
use DTrace [8] scripts to collect the lock arrival times of the
64 threads in a 100 milliseconds (ms) snapshot. As we can
see in Figure 4, the lock arrival times of threads on each
Socket are spread across a wide time interval for the default
Solaris scheduler. For example, as we can see in Figure 4, on
Socket(0), a thread arrived at the critical section at around
20 ms timestamp, but no other thread arrives at the critical
section on Socket(0) till the 50 ms timestamp. Therefore,
even though the lock is available before the 50 ms timestamp,
none of the threads have arrived at the critical section on
Socket(0) to acquire it until the 50 ms timestamp. Therefore,
the likelihood that the lock will be acquired before the 50
ms timestamp by a thread on a different Socket is very high.
This will trigger lock transfer, along with the shared data
protected by the lock, between Sockets. Thus LLC misses
will occur due to lock acquisition as well accesses to shared
data in the critical section. Since these LLC misses are on the
critical path, significant degradation in performance results.

3 The Shuffling Framework

To address the above problem, we propose a scheduling frame-
work called Shuffling, which aims to reduce the variance in
the arrival times of the threads scheduled on the same Socket.
By scheduling threads whose arrival times are clustered in a
small time interval so that they can all get the lock without
losing the lock to a thread on another Socket. Therefore,
Shuffling ensures that once a thread releases the lock it is
highly likely that another thread on the same Socket will
successfully acquire the lock and LLC misses will be avoided.
Consequently, Shuffling reduces the lock acquisition time
and speeds up the execution of shared data accesses in the
critical section, ultimately reducing the execution time of
the application.

Let us assume that the expected arrival times at critical
section for all the threads are known. We can distribute the
threads across the Sockets as follows. We sort the threads
according to their expected arrival times and divide them
into equal sized groups, one group per Socket to maintain
load balance across the Sockets. Moreover, each group can
be formed by taking consecutive threads from the sorted list
to minimize the variance in arrival times for threads in each
group. Finally, by migrating the threads, we distribute the
threads across the Sockets according to the above schedule.

We observe that, instead of moving locks and shared data
they protect between the Sockets, Shuffling moves the threads
between the Sockets. Migrating threads between Sockets is
preferable to moving locks, and shared data they protect, be-
tween Sockets. This is because when multiple threads are
contending for locks and shared data, they are not doing
useful work and hence the thread migration cost is not ex-
pected to impact the execution time. On the other hand,
Shuffling reduces LLC misses on the critical path of execu-
tion. Moreover, it preserves the number of threads on each
Socket, i.e. load balance across the Sockets is maintained.
We also observe, that it reduces inter-Socket thread migra-
tions compared to default Solaris. Thus shuffling improves
application performance.

Algorithm 1: The Shuffling Framework.
Input: N: Number of threads; C: Number of Sockets.

repeat
i. Monitor Threads -- sample lock times of N
threads.
if lock times exceed threshold then
ii. Form Thread Groups -- sort threads
according to lock times and divide them into C
groups.
iii. Perform Shuffling -- shuffle threads to
establish newly computed thread groups.
end
until application terminates;

The key problem that we face is -- how to determine the
expected arrival times of threads. One way to achieve this is
to analyze the application code and instrument it to collect
this information. This task is complicated by the fact that
an application typically contains many critical sections and
it would require analyzing the application before it can be
run to take advantage of Shuffling. However, we would like to
develop a Shuffling algorithm that does not modify application
code and can be applied on-the-fly to any application that is
run on the system. Therefore we base our shuffling algorithm
on thread lock times that can be collected by using simple OS
level monitoring utilities. As we show later in this section,
sorting and grouping of threads according to their lock times
is effective in reducing the variance in the arrival times of
the threads scheduled on each Socket.

3.1 The Shuffling Algorithm

The overview of Shuffling is provided in Algorithm 1. Shuf-
fling is implemented by a daemon thread which executes
throughout an application’s lifetime repeatedly performing
the following three steps: monitor threads; form thread
groups; and perform thread shuffling. The first step moni-
tors the behavior of threads in terms of the percentage of
elapsed time they spend on waiting for locks. If this time
exceeds a preset threshold (we use 5% of elapsed time as the
threshold), shuffling is triggered by executing the next two
steps. The second step forms groups of similarly behaving
threads using the lock times collected during the monitoring
step. Finally the third step performs thread shuffling to
ensure that threads belonging to the same thread group are
all moved to the same CPU. Next we describe these steps in
greater detail.

(i) Monitor Threads. We monitor the fraction of execu-
tion time that each thread spends waiting for locks in user
space -- this is referred to as the lock time. Threads that
experience similar lock times will be placed in the same group
as they are likely to represent threads that contend with each
other for locks and keep the lock located on the same Socket.
The daemon thread maintains per thread data structure
that holds the lock time values collected for the thread as
well as the id of the Socket on which the thread is running.
The design of the monitoring component involves two main
decisions: a) selecting an appropriate sampling interval for
lock times and b) selecting an appropriate shuffling interval
i.e., time interval after which we form new thread groups
and carry out shuffling. We explain the selection of these
intervals in Section 3.2.

Getlock times Apply Shuffling
A A

Get lock times
A

Apply Shuffling Get locl:times Apply Shuffling
4 A

<200ms i o ~300ms.o200ms % L ~300ms . 200ms % ~300ms_ -
Application = IMonitor i No monitoring [Monitor ¢ No monitoring | Monitor No monitoring |~
initialization period |lock times : : lock times : i lock times ; :
<— Shuffling Interval (i) —-<— Shuffling Interval (i+1) > Time

Figure 5: Frequency of Monitoring and Shuffling.

(ii) Form Thread Groups. At regular intervals (i.e., shuf-
fling interval), the daemon thread examines the profile (i.e.,
lock time) data collected for the threads, and if the lock times
exceed the minimum preset threshold, it constructs thread
groups such that one group per Socket is formed. We would
like the lock time behavior of threads within each group to
be similar. Therefore we sort the threads according to their
lock times and then divide them into as many groups of
consecutive threads as the Sockets being used to run the ap-
plication. For example, when all Sockets are being used, the
first group is assigned to Socket(0), the second to Socket(1),
the third to Socket(2), and the fourth to Socket(3). Since
the size of each thread group is the same, load balance across
the Sockets is maintained.

(iii) Perform Shuffling. This step simply affects the thread
groups computed for each of the Sockets in the preceding step.
That is, at regular intervals (i.e., shuffling interval), Shuffling
simultaneously migrates as many threads as needed across
Sockets to realize the new thread groups computed in the pre-
vious step !. In this step we expect only a subset of threads
to be migrated as many threads may already be bound to a
set of cores on the Sockets where we would like them to be. It
is also possible that in some programs, over many shuffling in-
tervals, the behavior of threads does not change significantly.
If this is the case, the thread groups formed will not change,
and hence no threads will be migrated. Thus, effectively
the shuffling step is skipped altogether and monitoring is
resumed. In other words, when thread migrations are not
expected to yield any benefit, they will not be performed.

3.2 Frequency of Monitoring and Shuffling

In developing a practical implementation of the Shuffling
framework we must make several policy decisions. First, we
must select an appropriate sampling interval for collecting
lock time data of the threads before thread groups can be
formed for shuffling. Second, we must select an appropriate
shuffling interval, i.e. duration between one application of
shuffling and the next.

3.2.1 Sampling Interval.

We monitor the lock times of threads through the proc file
system. Although small sampling interval allows fine-grain
details of the lock time data to be collected, it increases
the monitoring overhead. Therefore selecting an appropriate
sampling interval is very important. To select an appropri-
ate sampling interval, we measured the system overhead of

'For balancing load across cores, Shuffling delegates the job
of migrating threads within cores of a Socket to the default
Solaris thread scheduler.

o |
™
X -
[AET)
=N |
Q
Q 8 _
© —
= !
» :
L :
=o | i
oo ‘ o
|
-
i ‘ :
o |

0.5 10 2.0
Shuffling Interval (secs)

Figure 6: LLC Miss Rates vs Shuffling Interval: shuffling
with 500 milliseconds interval provides sustained reduction
in LLC miss rate.

Shuffling with different lock time sampling intervals when
programs are running with 64 threads on our machine. When
we use time intervals less than 200 milliseconds (ms) (e.g.,
50 ms, 100 ms), the system overhead is significantly higher.
This is due to the high rate of cross-calls, which lead to high
system time [26]. Therefore, the Shuffling framework uses
200 ms time interval for collecting lock times. The overhead
of monitoring lock times with 200 ms is less than 1% of
system time, which is negligible.

3.2.2 Shuffling Interval.

Shuffling interval significantly impacts the performance im-
provements as it affects lock transfer rate between Sockets,
and thus affects LLC misses in the critical path. Therefore,
for finding an appropriate shuffling interval, we measured
the LLC miss-rate with different shuffling intervals as shown
in Figure 6 by running BT with 64 threads on 64 cores with
the Shuffling framework. As we can see in Figure 6, shuffling
with 500 ms interval provides sustained reduction in LLC
miss rate and gives best performance for BT. Although we
can shuffle with an interval less than 500 ms by using small
lock time sampling intervals, as explained above, it increases
system overhead and limits performance benefits. Therefore,
we have chosen 500 ms as a shuffling interval in this work.

® Socket(0) ® Socket(1) B Socket(2) & Socket(3)

100
75-
m
£
0 50- e i o ©¢
= ° @
[) °] <>
25-
[®) =
<
e , Lo _ L as° oo
° ° & i ® o
[)] <>
0 @
Thread ID

Figure 7: Lock arrival Times of the 64 threads of BT with
Shuffling across all the four Sockets. DTrace scripts were
used to collect the arrival times of 64 threads of BT before
acquiring the lock in a 100 milliseconds interval.

[l Solaris Il Shuffling

I isc | As- I I
T T

Figure 8: Lock arrival times ranges with Solaris vs. Shuffling.

~
(&)

Arrival Times Range
n «a
(¢ o

As shown in Figure 5, for every 500 ms, the Shuffling
framework collects lock times using prstat(1) utility with
200 ms sampling interval, constructs thread profile data
structures with the lock times and core ids, form groups,
and then assigns each of the groups to a set of cores (or
Sockets). It repeats this process until completion of the
program. Finally, the pset_lwp_bind(2) system call is used for
binding a group of threads to a set of cores (called a processor-
set in Solaris terminology). A processor-set is a pool of
cores such that if we assign a multithreaded application to a
processor-set, then during load balancing, the OS restricts
the migration of threads across the cores within the processor-
set [26].

3.3 Impact of Shuffling on Bodytrack (BT)

We show that shuffling based on thread lock time measure-
ments does have the intended effect, i.e. reduction in variance
across arrival times of threads on a given Socket. Unlike the
lock arrival times of BT with Solaris (Figure 4 in Section 2),
as we can see in Figure 7, the lock arrival times of threads
are closely clustered minimizing variance when Shuffling is
employed. Moreover, Figure 8 shows that the range over

Table 1: BT achieves 54% performance improvement.

Solaris | Shuffling
Tmax Lock Transfers 68% 43%
LLC Miss Rate 3.3 MPKI | 1.9 MPKI
Lock Time 88% 74%
Avg. Execution Time 113 secs 52 secs

which lock arrival times of threads are distributed reduces
significantly when Shuffling is used.

When running BT with 64 threads on 64 cores across 4
Sockets with Shuffling, only around 43% of the time the lock
transfers take place between the local Socket and a remote
Socket. In other words, Tiq. lock transfers are encountered
roughly 2/5th of the time. However, as we described in
Section 2, with Solaris, Tiaz lock transfers are encountered
roughly 2/3rd of the time. Therefore, Shuffling dramatically
reduces high overhead lock transfers and thus, reduces LLC
misses on the critical path. While LLC miss rate of BT with
Solaris is 3.3 MPKI, LLC miss rate with Shuffling is 1.9 MPKI.
Moreover, lock time of BT with Solaris is 88%, lock time
with Shuffling is 74%. That is, with Shuffling, there is 42%
reduction in LLC miss rate and lock time reduces by 14%.
BT achieves a large performance improvement (54%) with
Shuffling. Table 1 summarizes these observations.

The large improvement in performance of BT is in part due
to additional contributing factors: reduction in coherence
traffic and inter-Socket thread migrations. By minimizing
coherence traffic, Shuffling reduces latency of LLC miss.
Moreover, by keeping threads close to locks, Shuffling reduces
lock time; thus, threads go to sleep state far less often with
Shuffling compared to Solaris. We observed that when a
thread made a transition from sleep state to a ready state,
often the core on which it last ran is not available and it is
migrated to a core available on another Socket. Therefore,
Shuffling encounters far fewer thread migrations between
Sockets than Solaris -- we observed that while the inter-
Socket thread migration rate with Solaris was 270 migrations
per second, it is only 16 migrations per second with Shuffling.

We have explained how Shuffling improves the performance
of the BT multithreaded program. In the next section, we
present its evaluation with a wide variety of multithreaded
programs.

4 Evaluation

We demonstrate the merits of Shuffling via experimental
evaluation of the performance of several multithreaded ap-
plications. We also provide a detailed explanation of the
overheads associated with Shuffling. We seek answers of the
following questions using these experiments:

e Does Shuffling achieve better performance for multi-
threaded programs than modern OS such as Solaris
which is oblivious of the lock contention among multiple
threads belonging to an application?

e How does Shuffling perform compared to the state-of-
the art cache contention management technque [3] and
PBind (pinning one thread to core)?

e Is Shuffling effective in running multiple multithreaded
programs simultaneously on multisocket systems?

We compare Shuffling with the following:
(i) Solaris -- the default Oracle Solaris 11.

(ii) DINOJ3] is a state-of-the-art cache contention manage-
ment technique. It reduces cache contention (LLC miss rate)
by separating memory intensive threads by scheduling them
on different sockets of a multicore machine. By combining
low memory-intensive threads with high memory-intensive
threads, the cache pressure is balanced across sockets and
thus overall cache miss-rate is reduced.

(iii) PSets only permits intra-socket migration of threads,
i.e. threads can migrate from one core to another on the
same Socket. PSets scheduling essentially divides threads
into four groups at the beginning of execution and assigns
them to four Sockets. That is assigning threads 1 to 16 to
Socket(0), threads 17 to 32 to Socket(1), threads 33 to 48 to
Socket(2), and threads 49 to 64 to Socket(3). PSets neither
changes the groups of threads nor migrate threads between
the groups.

(iv) PBind is nothing but the commonly used one-thread-
per-core Binding (or pinning) model, i.e. it does not allow any
thread migrations. Using pbind(1) utility, we bind 64 threads
to 64 cores, one thread per core. The difference between
PSets and PBind is that thread migrations are allowed within
the groups (or processors) with Psets.

4.1 Experimental Setup

Our experimental setup consists of a 64-core machine running
Oracle Solaris 11. Figure 2 shows its configuration. We have
chosen Solaris OS as its Memory Placement Optimization
feature and Chip Multithreading optimization allow to effec-
tively support multicore multiprocessor systems with large
number of cores. Specifically, Solaris kernel is aware of the
latency topology of the hardware via locality groups that
guides scheduling and resource allocation decisions. It pro-
vides several effective low-overhead observability tools (e.g.,
DTrace [8]). Solaris uses next touch memory allocation pol-
icy [26]. All programs considered use pthreads and pthreads
use adaptive_mutex locks (spin-then-block policy) [21].

Benchmarks. We evaluate Shuffling using a wide variety of
33 multithreaded programs including SPEC jbb2005, PBZIP2,
and programs from PARSEC, SPEC OMP2001, and SPLASH2
suites. The implementations of PARSEC programs and
SPALSH?2 are based upon pthreads and we ran them using na-
tive inputs (i.e., the largest inputs available). SPEC OMP2001
programs were run on medium sized inputs. SPEC jbb2005
(JBB) with single JVM is used in all our experiments.

We present detailed performance data for 20 programs
of Figure 1. These programs have substantial parallelism
and high lock times. For the remaining 13 programs (of all
the 33 programs) with low lock times (i.e., less than 5%),
data is presented to simply show that their performance is
unaffected by Shuffling. We also exclude programs with very
short running times (< 10 seconds).

Performance Metrics. We ran each experiment 10 times
and present average and coefficient of variation (CV) results
from the 10 runs. Coefficient of variation is defined as the
ratio of the standard deviation to the mean. The performance
metrics we use are: percentage reduction in running time
for all the programs except SPECjbb2005 (improvement in
throughput). We ran programs with 64 threads to use all four
Sockets in all these experiments.

Table 2: Performance improvements relative to Solaris. Shuf-
fling improves performance up to 54% and an average of 13%.
Shuffling significantly outperforms DINO, PSets, and Pbind.

Performance Improvement (%)

Program | Shuffling | DINO | PSets | PBind
BT 54.1 -5.0 -2.0 -3.3
FA 6.0 2.1 7.0 -12.7
FS 12.0 -13.1 1.1 1.0
SC 29.0 6.0 -13.0 -15.0
AM 9.3 -11.0 1.0 -115.0
AS 13.0 -21.0 4.6 -2.3
AL 13.2 -17.0 -1.0 -95.0
EQ 9.0 -6.0 -0.1 -2.3
FM 10.7 -5.8 2.0 1.0
GA 4.0 -9.0 -0.1 2.5
GL 9.1 -5.1 0.1 -4.6
MG 8.8 -8.0 1.0 -11.8
SM 4.7 -5.0 0.1 1.9
WW 5.2 -6.0 -2.0 -17.2
oC 13.4 3.1 4.2 2.1
RT 4.0 -10.8 2.0 -4.0
RX 19.0 5.0 -13.0 -7.4
VL 12.8 -7.0 2.8 -1.0
PB 13.0 11.2 -12.9 -21.0
JB 14.0 -2.0 -1.0 -7.4

4.2 Performance Benefits

As we can see in Table 2, Shuffling significantly outperforms
default Solaris as well as all other techniques. Substantial
performance improvements (13% on average) are observed
over the default Solaris. For the bodytrack (BT) program the
improvement is the highest -- around 54%. The throughput
of SPEC jbb2005 (JB) is improved by 14%. The programs
that exhibit high lock contention get high performance im-
provements with Shuffling. PSets is slightly better than
DINO and it also outperforms Shuffling for the low mem-
ory intensive and low lock contention program, FA. Shuffling
achieves low performance improvements for the programs
(e.g., SM) with large working sets. This is because of the
tradeoff between sacrificed cache locality and improved lock
acquisition times.

However, both PSets and DINO give worse performance for
several programs even when compared to the default Solaris
scheduler. DINO outperforms Solaris for programs with low
lock contention -- programs PB, RX, FA, and SC. Compared
to Solaris, DINO gives better performance for 25% of the
programs and PSets for 40% of the programs. However, the
default Solaris scheduler is better on average compared to
both DINO and PSets scheduling techniques. Though DINO
is effective for a mix of single threaded workloads where half
of the threads are memory-intensive and other half are CPU-
intensive, it may not work well for multithreaded programs
with high lock contention. One can view Shuffling and DINO
as complementary techniques that can be potentially com-
bined to further improve performance -- using DINO for lock
contention free, but memory intensive programs.

Figure 9 shows lock times and LLC miss rates of the 20
programs. As we can see, Shuffling reduces both the lock
times and LLC miss rates compared to Solaris, and thus
improves performance. Moreover, as we can see in Figure 10,

[l Solaris [l Shuffling
[Aw][As] [£Q] [FM] [GA] [GL] (VG [sM]

0 I Infiin

[oc|[RT][Rx][vL][PE][J8]

%
\‘
[8)]

(

Lock Time
3

(a) Lock times.

.Solaris.Shufﬂing

[T [FA] [FS] [SC] [AL] [Av] [S] [£Q] [Fm] [GA] [GL] [Va] [SM] fwwi [oc] [RT] [Rx] [VL] [F8]

Ohul “ “hh i “"H“
s

) LLC miss rates.

n
o
>

—
[9)]

(9]

LLC Miss Rate (MPKI)
o

Figure 9: Shufﬂing reduces both lock times and LLC misses.

M Solaris [l Shuffling

[B7] [FA] [Fs] [So] [AL] [AM] [AS)] [Eq) [Fw] [GA) L] [[Sw] fwwi [oc] [A] [FX] [VL] [PB] [38]
£0.15
S
8
&
Lo.10
z
[e]
°
5
-6005 II I
(o]
o
Qo I II IJII!Jj_IJllnl-,.I]
e

Figure 10: Shuffling reduces performance variation.

the performance variation is low (coefficient of variation <

0.1) for most of the programs with both Solaris and Shuffling.

4.2.1 Why PBind Degrades Performance?

As we can see in Table 2, PBind (pinning one thread per
core) significantly degrades performance of several programs
compared to the other algorithms. Specifically, PBind gives
poor performance for programs with high lock contention
on multicore multiprocessor systems with a large number
of cores. As the threads of a multithreaded program do
not migrate across Sockets of a multicore multiprocessor
system with PBind, the frequency of high overhead lock
transfers between Sockets increases compared to the default
Solaris. This leads to an increase of LLC misses on the
critical path of the multithreaded program, which leads to
degraded performance [34].

4.2.2 Shuffling the remaining 13 programs.

While the above detailed performance data is for the 20
programs with high lock times, we also applied Shuffling to
the remaining 13 programs (of all the 33 programs). We
divide these 13 programs into two groups: 1) with low lock
times and 2) with very short running times. The programs
in the first group have low lock times (less than 5% of the

n w
o o
I T

Number of Threads Shuffled
o

L AM AS EQ FM GA GL MG SMWWOC RT RX VL PB JB avg
Program

Figure 11: The degree of Shuffling.

execution time) because the serial part of the execution,
executed by the main thread, accounts for 90% to 95% of
the execution time -- the programs are blackscholes, dedup,
canneal, ferret, x264, vips, and raytrace from PARSEC. The
purpose of this experiment was to determine if Shuffling can
hurt performance when it is applied to programs where it is
not needed. We observed that the change in execution time
was insignificant, i.e. less than 0.5%. This is not surprising
as, when lock times are small, the cost of Shuffling is simply
the cost of monitoring as no thread migrations are triggered.
The programs in the second group have very short running
times (between 2 secs and 5 secs) -- the programs are barnes,
fft, fmm, lu, radiocity, and water from SPLASH2.

4.3 Overhead of Shuffling

Now let us consider the overhead of Shuffling. The cost of
monitoring thread lock times is very low — around 1% of the
CPU utilization can be attributed to the monitoring task.
The cost of migrating threads during shuffling is also small.
The bar graph in Figure 11 shows the average number of
threads shuffled (across Sockets) in a single shuffle operation
for each of the programs. This number ranges from a mini-
mum of 4 threads for GA to a maximum of 32 threads for RT.
Across all the programs, the average is 12.4 threads being
migrated during each shuffling operation. Since the total
number of threads is 64, this represents around 19% of the
threads. The system call for changing the binding of a single
thread from cores in one CPU to cores in another CPU is
around 29 microseconds. Therefore every 500 milliseconds
Shuffling spends around 360 microseconds (29 x 12.4) on
changing the binding of migrated threads. Thus, this repre-
sents 0.0007% of the execution time. Therefore, the overhead
of Shuffling is negligible.

4.4 Time Varying Behavior of Degree of Shuffling

Finally we study the time varying behavior of thread shuffling
as observed throughout the executions of the programs. In
Figure 12 the number of threads that are shuffled is plotted
over the entire execution of the programs. We see several
different types of behavior if we examine the behavior fol-
lowing the startup period, i.e. the initial period of execution.
For some benchmarks (BT, FA, AM, AS, MG, RT, RX, VL, WW)
the execution can be divided into small number of intervals
such that during each interval the number of threads shuffled
varies within a narrow range. For a few benchmarks (FS, AL,
SC, EQ, GA, GL, SM) the number of threads shuffled varies
rapidly within a narrow range after the initial execution pe-
riod. For some programs (PB, JB) the number of threads
shuffled varies rapidly across a wide range. Finally, for some
programs often no threads are migrated — (GA, GL, SC, SM).

SC

09 05 Or 06 02 0L O
PaliNyS Speail | Jo JagquinN

[
w

09 05 Or 06 02 0L O
PaliNuS Speail | Jo JagquinN

£

15 20 25 30 35

Time(secs)

10

5

03 05 Ov 08 02 OL
paNNUS SpealL 10 I0aNN

(‘)

=
[an]

40

30

20

10

09 05 Or 06 02 0L O
PaIiNuS Spealy | Jo Jagquiny

Time(secs)

Time(secs)

Time(secs)

(@]

w L
o
to
lo
@
lo
®
lo
3
lo
«
fo

09 0S Oy 0 02 O O

PaINys spealyL 4o JequinN

0

< teo
o
b
ey

09 05 O 06 0Oc OF O

PaINyS spesalyL 4o JaquinN

s 3

<
lo
O
lo
3
lo
®
lo
«
lo
,‘0

Om Om ov om ON O_.

paiynys speslyl jo ‘_wnE:Z

-

< lo
e}
lo
3
lo
@
lo
«
lo

T T T T T T ,\O

09 05 OF 06 02 OF O

PaIiNyS Speall | Jo JagquinN

Time(secs)

Time(secs)

Time(secs)

Time(secs)

MG

50

40

30

20

09 05 Oy 08 02 Ok
PaINYS SPeall | 40 JaquinN

0

=)
[©)

09 05 Oy 0E 02 Ok
PaINYS SPeall | 40 JaquinN

<
O]

o
=]
| K=)
=e)
K=
©
[K=)
<
Lo
(Y]
ro

09 05 Ov 0€ 0z OL

paNNUS SpeaiiL 10 10anN

=

[T
K=
n
| K=)
<
| K=)
[3p)
K=
s\
[K=)
Fo

09 05 0OF 0€ 02 Ol
P3IYNYS Speaiy Jo JsquinN

0

Time(secs)

Time(secs)

Time(secs)

Time(secs)

RT

09 05 Oy 06 02 0L O
Palnys speaiy Jo Jaquiny

[®]
o

09 05 Oy 06 02 0L O
PalnyS speaiy Jo JaquinN

2
=

40

20
Time(secs)

10

09 05 Oy 08 0z QL
poNinuS SpesliL 10 1eaunN

=
n

09 05 Oy 06 02 0L O
PalinyYS Speaiy L Jo Jaquiny

Time(secs)

Time(secs)

Time(secs)

JB

09 05 Oy 06 02 0L O
palinys speaiy L Jo Jaquiny

m
o

09 05 Oy 06 02 0L O
Palinys speaiy L Jo Jaquiny

-
>

15 20 25 30 35
Time(secs)

10

5

d

09 05 Oy 08 02 QL
poNinyS Speali 10 seanN

RX

r©o

09 05 Oy 06 02 0L O
palinys speaiy L Jo Jaquiny

Time(secs)

Time(secs)

Time(secs)

Figure 12: Time varying behaviour of degree of thread shuffling. The number of threads that are shuffled every 500 milliseconds

is plotted over the entire execution of the programs.

Table 3: Shuffling multiple applications. Running times of
the programs are expressed in seconds (s).

FS MG || AL AM FS AL
Solaris 106s | 74s Tls | 72s 104s | 69s
Shuffling 83s | 67s 62s | 65s 82s | 62s
Improvement || 21.7% 9.5% || 12.7% 9.7% || 21.2% 10.1%

4.5 Multiple Applications

So far we have considered performance of a single application
being run on the system. In practice multiple multithreaded
applications may be run simultaneously on the system. Next
we ran pairs of programs, each using all 4 Sockets, to see
if Shuffling improves performance of both applications. We
ran a pair of compute intensive applications (FS and MG);
a pair of memory intensive applications (AL and AM); and
a combination of compute (FS) and memory (AL) intensive
applications. The results of running these application pairs
with Solaris 11 and Shuffling are presented in Table 3 (s
next to the times indicates seconds). As we can see, in all
three cases, both applications benefit from Shuffling and their
performance improvements are: 21.7% and 9.5%; 12.7% and
9.7%; and 21.2% and 10.1%. Therefore we conclude that
Shuffling is robust because it is beneficial for the multiple
applications that are running on each Socket simultaneously.

5 Related Work

There are many aspects of the lock contention problem and
thus range of strategies have been proposed to address lock
contention. Three specific approaches proposed in prior work
include: thread migration [19, 40]; thread clustering [50]; and
contention management [50, 21].

5.1 Thread Migration Techniques

The work most closely related to our work is RCL [19] in
which authors make the observation that most multithreaded
applications do not scale to the number of cores found in
modern multicore architectures, and therefore it may be
beneficial to dedicate some of the cores to serving critical
sections. While this technique works well for some multi-
threaded applications, it has the drawback that application
must be modified -- critical sections must be identified and
reengineered [19]. However, Shuffling does not modify appli-
cation code and can be applied on-the-fly to any application
that is run on the system. Moreover, it is also effective
for scheduling multiple multithreaded applications and its
overhead is negligible.

Another work closely related to our work is [40] in which
authors make the observation that, in multicore multiproces-
sor systems, it may be beneficial to employ thread migration
to reduce the execution time cost due to acquiring of locks.
They propose a migration technique that is incorporated in
the OS thread scheduler. While this technique performs well
for a few microbenchmarks [40], for majority of SPLASH2
programs the technique frequently yielded large performance
degradation. Our Shuffling technique is superior to [40] as
it consistently provided performance improvements across
a large set of multithreaded programs including SPLASH2
programs. [13] uses an online model to determine how many
cores to allocate to lock intensive programs to reduce lock
contention in the kernel space. The idea is to separate lock-

intensive kernel tasks from lock-free kernel tasks and control
kernel lock contention by allocating appropriate number of
cores. Shuffling focuses on reducing lock contention in the
user space by adaptively migrating threads across sockets
of multicore multi-CPU system. Unlike [13], Shuffling is
effective for coscheduling multiple applications.

Cache contention aware scheduling techniques also employ
thread migration across Sockets. These techniques are guided
by the last-level cache miss-rates [3, 52, 1, 22, 24, 25, 44, 45,
29, 46, 51, 31]. While these techniques are highly effective for
workloads consisting of multiple single threaded programs,
they are not effective in scheduling threads of a multithreaded
program on a cache-coherent multicore multiprocessor system.
This is because they do not consider lock contention among
the threads of a program while making thread scheduling
decisions. Unlike the above, we demonstrate that Shuffling
significantly outperforms these techniques and also it very
effective in scheduling of threads of multiple multithreaded
applications. [16, 35] presents load balancing techniques to
improve performance of multithreaded programs.

5.2 Thread Clustering Techniques

A number of thread clustering techniques have been devel-
oped to improve program performance [50, 47, 43]. Of these,
the technique in [50] is aimed at reducing the overhead caused
by lock contention. This is achieved by clustering threads
that contend for the same lock and then schedule them on the
same processor. The number of threads in a cluster can be
large, in fact all threads in an application will be in the same
cluster if they are synchronizing on a barrier. Thus, load is
no longer balanced, and parallelism is sacrificed. The authors
state “it is possible that the performance benefit of reducing
contention is greater than the performance benefit of higher
parallelism”. In contrast, our Shuffling framework maintains
load balance and thus does not sacrifice parallelism. Finally,
while the approach presented in [50] is effective for server
workloads, our approach is more relevant for highly parallel
applications.

The clustering techniques in [47, 43] have a different objec-
tive. In [47] authors examine thread placement algorithms to
group threads that share memory regions together onto the
same processor so as to maximize cache sharing and reuse.
It is assumed that the shared-region information is known a
priori, i.e. this information is not ascertained dynamically.
In [43], Tam et al. propose a thread clustering technique to
detect shared memory regions dynamically. In contrast, we
focus on minimizing lock transfers between Sockets, and thus
minimizing critical LLC misses of applications running on
a multicore multiprocessor machine with a large number of
cores.

5.3 Contention Management Techniques

Another cause of performance degradation is lock-holder
thread preemptions as they slow down the progress of thread
holding the lock. In [50] a technique is presented for reducing
lock holder preemptions. While it is important to avoid
lock-holder preemptions, this technique is complementary to
our approach. Preventing lock-holder preemptions reduces
the duration for which a thread holds the lock while our
thread shuffling techniques reduce the time it takes for a
thread to acquire a lock. [21, 33] propose a load control mech-
anism to decouple load management from lock contention
management. This approach uses blocking to control the
number of runnable threads and then spinning in response to

contention. While above techniques are aimed at contention
management, our work is aimed at reducing the overhead of
contention that manifests after the management techniques
have been applied.

5.4 Other Works

Complementary to our work are improved locking and syn-
chronization algorithms. In [14, 15, 36] authors propose
new locking mechanisms. In contrast, our work focuses on
adapting the location of threads across the Sockets of a
cache-coherent multicore multiprocessor machine to reduce
the lock transfers between Sockets and thus critical LLC
misses. In [10] NUMA’s impact on performance of different
barrier synchronization algorithms is studied but no solutions
are proposed. Several researchers [7, 23, 11, 48, 38, 12, 27,
18] studied the impact of NUMA on the performance of par-
allel applications and developed optimizations and adaptive
scheduling techniques. Gupta et al. [18] explored the impact
of the scheduling strategies on the caching behavior. Chandra
et al. [9], evaluate different scheduling and page migration
policies on a cache-coherent multiprocessor system. Sasaki
et al. [37] developed a scheduling technique for allocating
optimal number of cores to multithreaded programs. None
of the above works consider lock-access latency and critical
section processing times of threads for effective scheduling
them on multicore machines.

6 Conclusions

We demonstrated that the performance of a multithreaded
application with high lock contention running on a multicore
multiprocessor system is very sensitive to the distribution
of threads across multiple Sockets. To address this problem,
we presented Shuffling that reduces transfer of locks between
Sockets by migrating threads of a multithreaded program
across Sockets such that threads seeking locks are more likely
to find the locks on the same Socket. Migrating threads be-
tween Sockets is preferable to moving locks between Sockets.
This is because when multiple threads are contending for
locks and shared data, they are not doing useful work and
hence the thread migration cost is not expected to impact
the execution time. However, lock transfer times are on the
critical path of execution and hence preventing lock trans-
fers between Sockets reduces execution time. We evaluated
Shuffling with a wide variety of multithreaded programs and
the experimental results show that Shuffling achieves up to
54% reduction in execution time and an average reduction
of 13%. Moreover it has very low overhead and it does not
require any changes to the application source code or the OS
kernel.

7 Acknowledgments

This work is supported by National Science Foundation
grants CCF-1157377, CCF-0963996, CCF-0905509, and CSR-
0912850 to the University of California Riverside.

8 References

[1] M. Bhadauria and S. A. McKee. An Approach to
Resource-Aware Co-Scheduling for CMPs. In ICS, 2010.

[2] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In PACT, 2008.

3]

[4

5

[6

[7

8

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

S. Blagodurov, S. Zhuravlev, M. Dashti, and

A. Fedorova. A Case for NUMA-aware Contention
Management on Multicore Systems. In USENIX ATC,
2011.

S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek.
Reinventing Scheduling for Multicore Systems. In
HotOS, 2009.

S. Boyd-Wickizer, H. Chen, R. Chen, Y.Mao, F.
Kaashoek, R.Morris, A. Pesterev, L. Stein,M.Wu, Y. D.
Y. Zhang, and Z. Zhang. Corey: An operating system
for many cores. In OSDI, 2008.

S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
F. Kaashoek, R.Morris, and N. Zeldovich. An Analysis
of Linux Scalability to Many Cores. In OSDI, 2010.

T. Brecht. On the Importance of Parallel Application
Placement in NUMA Multiprocessors. In SEDMS, 1993.
B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic
instrumentation of production systems. In USENIX
ATC, 2004.

R. Chandra, S. Devine, B. Verghese, A. Gupta, and
M Rosenblum. Scheduling and page migration for
multiprocessor compute servers. In ASPLOS 199/.

J. Chen, W. Watson, and W. Mao. Multi-Threading
Performance on Commodity Multi-core Processors. In
HPC(C-Asia, 2007.

J. Corbalan, X. Martorell, and J. Labarta. Evaluation
of the Memory Page Migration Influence in the System
Performance: the Case of the SGI 02000. In SC, 2003.
J. Corbalan, X. Martorell, and J. Labarta.
Performance-driven processor allocation. In OSDI,
2000.

Y. Cui, Y. Wang, Y. Chen, and Y.Shi.
Lock-contention-aware scheduler: A scalable and
energy-efficient method for addressing scalability
collapse on multicore systems. In ACM TACO, 4,
Article 44, Jan. 2013.

D. Dice, V. Marathe, and N. Shavit. Flat Combining
NUMA Locks. In SPAA, 2011.

D. Dice, V. Marathe, and N. Shavit. Lock Cohorting:
A General Technique for Designing NUMA Locks. In
PPoPP, 2012.

X. Ding, K. Wang, P.B. Gibbons, and X. Zhang. BWS:
balanced work stealing for time-sharing multicores. In
Eurosys, 2012.

E. Frachtenberg, D. G. Feitelson, F. Petrini, and J.
Fernandez. Adaptive parallel job scheduling with
flexible coscheduling. In IEEE TPDS, (2005), 16(11).
A. Gupta, A. Tucker, and S. Urushibara. The Impact
Of Operating System Scheduling Policies And
Synchronization Methods On Performance Of Parallel
Applications. In SIGMETRICS, 1991.

L. Jean-Pierre, D. Florian, T. Gagl, L. Julia and

M. Gilles. Remote core locking: migrating
critical-section execution to improve the performance of
multithreaded applications. In USENIX ATC, 2012.

J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt.
Bottleneck Identification and Scheduling in
Multithreaded Applications. In ASPLOS, 2012.

R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry.
Decoupling contention management from scheduling. In
ASPLOS, 2010.

[22]

[23]

[24]

[25]

R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.

Using OS Observations to Improve Performance in
Multicore Systems. In IEEE Micro, 2008

R.P. Larowe, C. S. Ellis, and M. A. Holliday. Evaluation
of NUMA Memory Management Through Modeling

and Measurements. In JEEE TPDS, (1991), 688 -- 701.

Z. Majo and T. R. Gross. Memory management in
NUMA multicore systems: Trapped between cache
contention and interconnect overhead. In ISMM, 2011.
J. Mars, L. Tang, R. Hundt, K. Skadron, and

M. L. Soffa. Bubble-up: Increasing utilization in
modern warehouse scale computers via sensible
co-locations. In MICRO, 2011.

R. McDougall and J. Mauro. Solaris Internals. Prentice
Hall Publications, Second Edition, 2006.

R. McGregor, C. Antonopoulos, and D. Nikolopoulos.
Scheduling algorithms for effective thread pairing on
hybrid multiprocessors. In IPDPS, 2005.

A. Mendelson and F. Gabbay. 2001. The effect of
seance communication on multiprocessing systems. In
ACM Trans. Comput. Syst. 19, 2 (May 2001), 252-281.
A. Merkel, J. Stoess, and F. Bellosa,
Resource-conscious scheduling for energy efficiency on
multicore processors. In Eurosys, 2010.

PBZIP2. http://compression.ca/pbzip2/

K. K. Pusukuri, D. Vengerov, A. Fedorova, and

V .Kalogeraki. FACT: a framework for adaptive
contention-aware thread migrations. In CF, 2011.

K. K. Pusukuri, R. Gupta, L. N. Bhuyan. Thread
Reinforcer: Dynamically Determining Number of
Threads via OS Level Monitoring. In IISWC, 2011.

K. K. Pusukuri, R. Gupta, L. N. Bhuyan. No More
Backstabbing... A Faithful Scheduling Policy for
Multithreaded Programs. In PACT, 2011.

K.K. Pusukuri and D. Johnson. Has
one-thread-per-core binding model become obsolete for
multithreaded programs running on multicore systems.
In USENIX HotPar, 2013.

K. K. Pusukuri, R. Gupta, L. N. Bhuyan. An Effective
OS Load Balancing Technique for Multicore
Multiprocessor Systems. Technical Report, Sept. 2012.
University of California, Riverside.

Z. Radovic and E. Hagersten. RH Lock: A Scalable
Hierarchical Spin Lock. In WMPI, 2012.

H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura.
Scalability-based manycore partitioning. In PACT,
2012.

C. Severance and R. Enbody. Comparing gang
scheduling with dynamic space sharing on symmetric
multiprocessors using automatic self-allocating threads.
In IPPS, 1997.

(39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

A. Snavely, D.M. Tullsen, G. Voelker. Symbiotic Job
scheduling For A Simultaneous Multithreading
Processor. In ASPLOS, 2000.

S. Sridharan, B. Keck, R. Murphy, S. Chandra, and

P. Kogge. Thread migration to improve synchronization
performance. In Workshop on Operating System
Interference in High Performance Applications, 2006
SPEC and the benchmark names SPEC OMP2001,
SPEC jbb2005 are registered trademarks of the
Standard Performance Evaluation Corporation. For
more information, see www.spec.org.

P. Sweazey and A. J. Smith. A Class of Compatible
Cache Consistency Protocols and Their Support by the
IEEE Futurebus. In ISCA, 1986.

D. Tam, R. Azimi, and M. Stumm. Thread Clustering:
Sharing-Aware Scheduling on SMP-CMP-SMT
Multiprocessors. In Furosys, 2007.

L. Tang, J. Mars, N. Vachharajani, R. Hundt, and

M. L. Soffa. The Impact of Memory Subsystem
Resource Sharing on Datacenter Applications.. In
ISCA, 2011.

L. Tang, J. Mars, and M. L. Soffa. Compiling For
Niceness: Mitigating Contention for QOS in Warehouse
Scale Computers. In CGO, 2012.

L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt,
and E. Tune. Optimizing GoogleéAZs Warehouse Scale
Computers: The NUMA Experience. In HPCA, 2013.
R. Thekkath and S. J. Eggers. Impact of Sharing-Based
Thread Placement on Multithreaded Architectures. In
ISCA, 1994.

VMware ESX Server 2 NUMA Support. White paper.
http://www.vmware.com/pdf/esx2_NUMA.pdf.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta. The SPLASH-2 programs: characterization and
methodological considerations. In ISCA, 1995.

F. Xian, W. Srisa-an, and H. Jiang. Contention-aware
scheduler: unlocking execution parallelism in
multithreaded java programs. In OOPSLA, 2008.

X. Xiang, B. Bao, C. Ding, K. Shen: Cache Conscious
Task Regrouping on Multicore Processors. In CCGRID,
2012.

S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing Shared Resource Contention in Multicore
Processors via Scheduling. In ASPLOS, 2010.

