
Shuffling: A Lock Contention Aware
Thread Scheduling Technique

Kishore Pusukuri

2

Multicores are Ubiquitous

 Deliver computing power via parallelism
 Potential for delivering high performance
 for multithreaded applications

Mobile phonesOracle SPARC M7-8

3

Complexity of Achieving High
Performance

Application Characteristics
Degree of Parallelism
Lock Contention
Memory Requirements

Operating System Policies
Thread Scheduling
Memory Management

Architecture
Cache Hierarchy
Cross-chip Interconnect Protocols

4

Modern Operating Systems

 Thread Scheduling: Time Share → Fairness
 Memory Allocation: Next → Data Locality

Improve System Utilization and Provide Fairness

Do not consider relationships between threads
of a multithreaded application

Application characteristics should be considered

5

OS Load Balancing vs Lock Contention

• OS load balancing is oblivious of lock contention

• Performance of multithreaded program with high
lock contention is sensitive to the distribution of
threads across sockets

• Inappropriate distribution of threads → increases
frequency of lock transfers

• Increases lock acquisition latencies

• Increases LLC misses in the critical path

6

Outline

 Introduction
 Motivation
 Shuffling Framework
 Experimental Results

7

Lock Contention Study

Run with 64 threads
64-core machine
Four 16-core Sockets
 (AMD Opteron)

23 programs (pthreads)

 - SPEC JBB2005
 - PARSEC
 - SPEC OMP2001
 - SPLASH 2x

Lock contention is an important performance limiting factor

8

Lock Contention on Performance

Lock time: the percentage of elapsed time a process
spends on waiting for lock operations in user space

9

Lock Transfers

 Overhead of Lock Transfer:

 T_low → Lock transfers between
threads located on the same Socket

 T_high → Lock transfers between
threads located on different Sockets

Lock
Transfer

Solaris

T_low 31%

T_high 69%

e.g.: bodytrack (BT) with 64 threads

Acquire Lock

Execute Critical Section

Release Lock

10

High Frequency of LLC misses & Its Cause

Lock arrival times of threads per socket at the entry of a
lock within a 100 ms time interval

BT with 64 threads

 Lock arrival times spread
 across a wide interval

 The likelihood of lock
 acquired by a thread on a
 different socket is very high

1
1

Outline

 Introduction
 Motivation
 Shuffling Framework
 Experimental Results

12

Thread Shuffling [PACT 2014]

Schedule threads whose lock arrival times are

clustered in a small time interval

Once a thread releases the lock it is highly likely

that another thread on the same Socket will

successfully acquire the lock

Minimize variation in lock arrival times of threads

13

Thread Shuffling (algorithm)

 repeat

 1. Monitor Threads – sample lock times of N threads

 if lock times exceed threshold then

 2. Form Thread Groups – sort threads according to
 lock times and divide them into S groups

 3. Perform Shuffling – shuffle threads to
 establish newly computed groups

until (application terminates)

Input: N → Number of Threads; S → Number of Sockets

14

Shuffling Interval

Impacts Lock transfers between sockets  LLC misses

BT: LLC miss rate vs Shuffling interval

500 ms as a shuffling
interval

15

Shuffling Overhead Negligible

Overhead is negligible (< 1% of system time)

Frequency of monitoring and shuffling

16

Lock Transfers: Solaris vs Shuffling

Lock
Transfer

Shuffling Solaris

T_low 46% 31%

T_high 54% 69%

Shuffling Solaris

LLC miss rate 1.9 3.3

Lock time 72% 86%

BT

17

Thread Lock Arrival-time Ranges

18

Lock contention & LLC miss rate

Reduces Lock
contention & LLC
misses

19

DINO: only considers LLC misses

PSets: binding a pool of threads to a pool of cores

Evaluating Thread Shuffling (cont.)

Up to 54%

Avg. 13%

Relative to Solaris

Memcached: 17%

TATP: 28%

20

Conclusions
Problem:
OS thread scheduling is oblivious to lock contention and
fails to maximize performance of multithreaded
applications on multicore multiprocessor systems

Idea:
Minimize variation in lock arrival times of threads

Advantages:
 Improves performance on average 13% (max of 54%)
 No need to modify application source code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

