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Multicores are Ubiquitous

 Deliver computing power via parallelism
 Potential for delivering high performance       
   for multithreaded applications

Mobile phonesOracle SPARC M7-8
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Complexity of Achieving High 
Performance

Application Characteristics
Degree of Parallelism
Lock Contention
Memory Requirements

Operating System Policies
Thread Scheduling 
Memory Management

Architecture
Cache Hierarchy
Cross-chip Interconnect Protocols
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Modern Operating Systems

 Thread Scheduling: Time Share →  Fairness 
 Memory Allocation: Next →  Data Locality 

Improve System Utilization and Provide Fairness

Do not consider relationships between threads 
of a multithreaded application

Application characteristics should be considered
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OS Load Balancing vs Lock Contention

• OS load balancing is oblivious of lock contention

• Performance of multithreaded program with high   
lock contention is sensitive to the distribution of    
threads across sockets

• Inappropriate distribution of threads → increases  
frequency of lock transfers

• Increases lock acquisition latencies

• Increases LLC misses in the critical path
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Outline

 Introduction
 Motivation
 Shuffling Framework
 Experimental Results
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Lock Contention Study

Run with 64 threads
64-core machine
Four 16-core Sockets
    (AMD Opteron)

23 programs (pthreads)

  - SPEC JBB2005
  - PARSEC
  - SPEC OMP2001
  - SPLASH 2x

Lock contention is an important performance limiting factor
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Lock Contention on Performance

Lock time: the percentage of elapsed time a process 
spends on waiting for lock operations in user space
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Lock Transfers

   Overhead of Lock Transfer:

 T_low → Lock transfers between 
threads located on   the same Socket

 T_high → Lock transfers between 
threads located on different Sockets

Lock 
Transfer

Solaris

T_low 31%

T_high 69%

e.g.: bodytrack (BT) with 64 threads 
 

Acquire Lock

Execute Critical Section

Release Lock
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High Frequency of LLC misses & Its Cause

Lock arrival times of threads per socket at the entry of a 
lock within a 100 ms time interval

BT with 64 threads

 Lock arrival times spread   
    across a wide interval

 The likelihood of lock          
  acquired by a thread on a    
 different socket is very high
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Outline

 Introduction
 Motivation
 Shuffling Framework
 Experimental Results
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Thread Shuffling [ PACT 2014 ]

Schedule threads whose lock arrival times are 

clustered in a small time interval

Once a thread releases the lock it is highly likely 

that another thread on the same Socket will 

successfully acquire the lock

Minimize variation in lock arrival times of threads
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Thread Shuffling (algorithm)   

     repeat

         1. Monitor Threads – sample lock times of N threads

         if lock times exceed threshold then

      2. Form Thread Groups – sort threads according to   
         lock times and divide them into S groups

      3. Perform Shuffling – shuffle threads to              
       establish newly computed groups  

until (application terminates)

Input: N → Number of Threads; S → Number of Sockets
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Shuffling Interval

Impacts Lock transfers between sockets  LLC misses

BT: LLC miss rate vs Shuffling interval

500 ms as a shuffling 
interval
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Shuffling Overhead Negligible

Overhead is negligible ( < 1% of system time)

Frequency of monitoring and shuffling
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Lock Transfers: Solaris vs Shuffling

Lock 
Transfer

Shuffling Solaris

T_low 46% 31%

T_high 54% 69%

Shuffling Solaris

LLC miss rate 1.9 3.3

Lock time 72% 86%

BT
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Thread Lock Arrival-time Ranges
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Lock contention & LLC miss rate

Reduces Lock 
contention & LLC 
misses
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DINO: only considers LLC misses

PSets: binding a pool of threads to a pool of cores

Evaluating Thread Shuffling (cont.)

Up to 54%

Avg. 13%

Relative to Solaris

Memcached: 17%

TATP: 28%
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Conclusions
Problem:
OS thread scheduling is oblivious to lock contention and 
fails to maximize performance of multithreaded 
applications on multicore multiprocessor systems

Idea:
Minimize variation in lock arrival times of threads

Advantages:
 Improves performance on average 13% (max of 54%)
 No need to modify application source code 
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