
CS5412: DANGERS OF
CONSOLIDATION
Ken Birman

1

Lecture XXIII

CS5412 Sping 2015

Are Clouds Inherently Dangerous?
2

 Gene Spafford, famous for warning that the emperor
has no clothes fears
that moving critical information
to the cloud could be a catastrophe

 His concern?
 Concentration of key resources creates

a “treasure chest” that adversaries can
focus upon and attack

 Risk of a virus spreading like wildfire

 Core issue: Clouds create monocultures

CS5412 Sping 2015

3

What Constitutes a “Monoculture”?

monoculture: An environment in which the
predominance of systems run apparently identical
software components for some or all services.

 Such systems share vulnerabilities, hence they are at risk
to rapid spread of a virus or other malware vector.

Cloned plants

Cloned babies
CS5412 Sping 2015

Forms of monocultures
4

 Large numbers of instances of identical programs or
services (includes applications, not just the O/S)

 Wide use of the same programming language or
scripting tool

 Any standard defines a kind of monoculture

CS5412 Sping 2015

Current example: OpenSSL

CS5412 Sping 2015

5

 SSL (renamed Transport Layer Security: TLS) is a
standard used to negotiate security keys for secure
TCP communication
 Involves use of keys from certificate authorities to

encrypt communication, including passwords
 Used for connections to https websites

 Issue: OpenSSL was an open source effort
 And open development: anonymous contributors
 One of those contributors introduced a bug in ~2012

What was the bug?

CS5412 Sping 2015

6

 OpenSSL has a heart beat protocol
 “If you are still there, send me XX bytes to prove it”
 Normally XX was small, like 16, but the client could

actually specify the value. Like 64. Or 128K
 With big values a buffer-read overrun caused

OpenSSL to send back a snapshot of XX bytes of its
memory…

 And, in that memory area, one could sometimes find
decrypted data including passwords

YELLOW SUBMARINE

Central lesson learned?

CS5412 Sping 2015

7

 In the cloud community, majority solutions often
dominate and become de-facto standards

 Everyone then uses them: They are “presumed to be
the best (because widely used), hence widely used...

 And if one of those shared elements is buggy, every
system using them is at risk of compromise

8

Taking the larger view

Three categories of attack

 Configuration attacks.
 Exploit aspects of the configuration. Vulnerability introduced by system

administrator or user who installs software on the target.
 Includes compiling SNDMAIL with the back door enabled

 Technology attacks.
 Exploit programming or design errors in software running on the target.

Vulnerability introduced by software builder.
 Here hacker breaks in via buggy code

 Trust attacks.
 Exploit assumptions made about the trustworthiness of a client or server.

Vulnerability introduced by system or network architect.
 Hacker abuses legitimate access, like a hospital worker who peeks at

Lindsey Lohan’s medical records
CS5412 Sping 2015

9

Monoculture: A defense for configuration attacks.

A carefully constructed, fixed, system configuration would be an
effective defense against configuration attacks.

 System configuration (today) is hard to get right and thus is best done by
experts. Having one or a small number of “approved” configurations
would allow that.

 Configuration attacks are considered “low hanging fruit” and thus likely
are the dominant form of attack today.

 Configurations change not only because a system administrator installs
software but also from a user visiting web sites or interacting with web
services that cause software downloads.

 To rule-out such downloads could be a serious limitation on system
functionality. Such downloads often bring vulnerabilities, though.

CS5412 Sping 2015

So monocultures help… for one case
10

 Question becomes: what percent of attacks
leverage configuration mistakes?

 … nobody knows!

 But gray-hat hackers assure us that things like standard

passwords are a very common problem

CS5412 Sping 2015

Viruses love monocultures
11

 Earliest Internet Worm was launched at Cornell!
 A brief episode of notoriety for us
 Worm exploited variety of simple mechanisms to break

into computer systems, then used them as a springboard
to find other vulnerable systems and infect them

 It had a simple trick to prevent itself from reinfecting an
already infected system: checked for a “lock” file
 But even if present, reinfected with a small probability
 Idea was to jump back onto systems that might have been

fixed by system admin team but who left the lock in place

CS5412 Sping 2015

Monocultures are a known risk
12

 Vast majority of computer viruses and worms
operate by exploiting software bugs
 For example, failure to check boundaries on arrays
 Very common in code written in C++ or C because

those languages check automated boundary checks
 Nothing stops an input from overrunning the end of the

array

 What lives beyond the end
of an array?

CS5412 Sping 2015

Beyond the end...
13

 Two cases to consider

 Array is on the stack (local to some active method)

 Array is in the program’s data or BSS area, or was

allocated from the heap

CS5412 Sping 2015

Stacks grow “downwards...”
14

Target array

registers, return PC

locals

registers, return PC

foo(1, 2, 3)

direction of
stack growth Other locals

CS5412 Sping 2015

Stacks grow “downwards...”
15

Target array

registers, return PC

locals

registers, return PC

foo(1, 2, 3)

Other locals

unreasonably long
input string

overwrites the
locals and registers
and the return PC

CS5412 Sping 2015

Stacks grow “downwards...”
16

registers, return PC

locals
foo(1, 2, 3)

PC points into data on
the stack

Compromised content
includes virus code

Attacker replaced
the return PC with
an address in the
middle of the
injected string

CS5412 Sping 2015

Why does this attack work?
17

 Attacker needs to be able to predict
 Where the target string lives in memory
 How the stack is arranged
 What the code that reads the string will do

 Trick is to get the code to jump into the data read
from the attacker

CS5412 Sping 2015

Bootstrapping concept
18

 The hacker doesn’t have much “room” for instructions

 So typically this logic is very limited: often just code
to read a longer string from the network and then
execute that longer code
 In effect, the initial attack is a bootstrap program
 It loads and launches a more serious program

CS5412 Sping 2015

Example
19

 String loads code that simply allocates a much
bigger object, reads from the same input source into
it, and jumps to the start

 Allows the attacker to send a multi-GB program
that would be way too large to “fit” within the stack
 Trick is to take over but not trigger exceptions
 If the attack causes the program to throw an exception,

someone might notice

CS5412 Sping 2015

What about data/heap?
20

 Here attacker might be in a position to overwrite other
adjacent variables on which the program is dependent
 This does assume some “predictability” in memory layout!
 We could perhaps replace a filename it reads or one it

writes with filenames the attacker would prefer that it use
instead, or with network URLs

 Of course the program will now be a very sick puppy but it
might last just long enough to do the I/O for the attacker

 That I/O becomes a “point of leverage” that the attacker
exploits like the first domino in a long line...

CS5412 Sping 2015

Example “attack opportunity”
21

 Any program that works with strings in C or C++ is at risk
even if we length-check inputs

void unsafe(char *a, char *b)
{
 char tmp[32];
 strcpy(tmp, a);
 strcat(tmp, b);
 return(strcmp(tmp, “foobar”));
}

 Problem here isn’t with the input length per-se but with the

assumption in “unsafe” that the combined string fits in tmp

CS5412 Sping 2015

Why not just fix the compiler?
22

 People have modified C to check array bounds
 This only helps in limited ways

 C and C++ and Fortran are unsafe by design because
of pointer aliasing
 They let us treat an object of one type as if it was of some

other type
 And they impose no real boundary checking at all

 Fixing the language would break many programs that

are in wide use: we would need to fix them too

CS5412 Sping 2015

Other examples of attacks

CS5412 Sping 2015

23

 Back doors, such as debug or maintenance features
 Passwords left with their default values
 Automated file or patch download features that can

be tricked into overwriting system files
 Code that has built-in features that can be misused

to trick the program into executing unusual logic
 … in fact the list is really endless!

Broader problem
24

 We simply don’t have a good way to create things
that are correct, by construction, ground up
 Lacking those, trying to find problems in existing code is

like trying to plug a leak in a dam

 At best we can prove properties of

one thing or another but the
assemblage invariably has holes!
 Or they sneak in over time

CS5412 Sping 2015

Cloud “permissiveness”
25

 Anyhow, it makes no sense to imagine that we would tell
people how to build cloud applications

 With EC2 we just hand Amazon an executable
 How will it know if the binaries were compiled using the

right compiler?
 What if the version of the compiler matters?
 Generally not viewed as a realistic option

 In fact when C and C++ run on .NET many of these

overflow issues are caught, but “managed” C or C++
will reject all sorts of classic programs as buggy

CS5412 Sping 2015

How to attack a cloud
26

 A good firewall can block many kinds of attacks

 But something will get through eventually, we can’t
avoid every possible risk and close every possible
virus exploit

 And once the virus breaks in, it compromises every
single accessible instance of the same code

CS5412 Sping 2015

What can we do about these issues?
27

 Today: Focus on these kinds of viral attacks

 Thursday: Look at the bigger picture

CS5412 Sping 2015

First, let’s stop the stack attack...
28

 How can we do that?
 The attacker is taking advantage of knowledge of the

program behavior and flaws

 An “unpredictable” program would have crashed but
not been so easy to compromise

 Can we take a program written in C or C++ and make
it behave less predictably without causing it to crash?

CS5412 Sping 2015

Stack randomization
29

 Idea is simple:
 Modify the runtime to randomly allocate chunks of memory

(unpredictable size) between objects on stack
 We can also add a chunk of unpredictable size to the

bottom of the stack itself

 Attacker countermeasures?
 May be possible to use a “block” of jump instructions, no-

ops to create code that can run in a “position independent
manner”

 Or might guess the offset and try, try again... If the
datacenter doesn’t notice the repeated crashes a few
hundred tries might suffice to break in

CS5412 Sping 2015

.NET has automated diversity
30

 If enabled, a wide variety of randomization
mechanisms will be employed

 Just a bit in the runtime environment you can set

 But important to retest programs with stack
randomization enabled
 Some programs depend on bugs, other issues!

CS5412 Sping 2015

More recent work on diversity

CS5412 Sping 2015

31

 Diverse OS can scramble the number of system calls

 Placement of segments in memory can be varied

 Code can be dynamically relinked to reorder the
placement of compiled code and data elements

But this can’t stop all attacks
32

 For example, database “code injection” attacks have a
similar approach and yet don’t rely on array overflow:
 Intended code
 SELECT * FROM users WHERE name = '" + userName + "';"
 Limits query to data for this user

 Attacker sends a “faulty” name argument:
 ' or '1'='1
 SELECT * FROM users WHERE name = ` ’ or ‘1’=1;

 There are many examples of this kind because many
programs exchange messages that involve application-
specific programming languages

CS5412 Sping 2015

Blocking SQL query injection?
33

 This is easy:
 Read the input
 Then “clean it up”
 Then pass it in to the application

 As long as the developer uses the right tools these
issues don’t arise
 But not every developer cooperates

CS5412 Sping 2015

Other ideas: Castro and Costa
34

 One project at Microsoft monitors program crashes
 Each time a crash happens they look to see what input

caused the program to fail
 In one project they create virus “signatures”
 In another they automatically combine these to create a

pattern, more and more selective, for blocking the input
strings that cause the problem

 Use gossip, rapidly and robustly disseminate the fix
together with a “proof” of the bug that triggers it

Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao
Zhang, and Paul Barham, Vigilante: End-to-End Containment of Internet Worms, in
ACM Symposium on Operating Systems Principles (SOSP), Brighton, UK, Oct 2005 CS5412 Sping 2015

What kind of “proof”?
35

 Before installing a patch, verify that problem is real
 Proof: Example of an input that will cause a crash or

some other form of compromise
 Verification: Try it inside a virtual machine

 One issue: if the filter is too broad, it might block
legitimate inputs that wouldn’t cause a crash

 We want to block the attack but not legitimate users

CS5412 Sping 2015

Back door attacks
36

 Some attacks don’t actually compromise a program
 For example, the early Internet worm operated by

exploiting a feature in the original SNDMAIL program
 Code was written by Eric Allman and was unstable for

the first few years
 So he needed ways to see what the problem was
 Included a debug feature allowing him to use SNDMAIL as a

kind of remote FTP program to access files on remote
system… and SNDMAIL runs with elevated priority…

 Internet worm used this “feature” as one of its attack vectors

CS5412 Sping 2015

Stack diversity doesn’t stop these…
37

 Backdoor attacks use legitimate features of a
program, or perhaps debug features, to ask
program to do things it was programmed to do!
 The program isn’t really malfunctioning or compromised
 But it still does things for us that allow breakin
 For example, can use SNDMAIL to copy a modified

program on top of /etc/init in Linux
 This modified program might work normally, but always

allow logins from Evil.Hacker with password “Gotcha”
 Better compiler won’t help…

CS5412 Sping 2015

Neither would better checking tools
38

 A back door is a problem with the specification
 The program shouldn’t have functionality that replaces

arbitrary files with code downloaded from the network,
or copied from other places, or even with code
“created” within the program itself

 Yet it is very hard to pin down the rules we need to
check to achieve confidence!

CS5412 Sping 2015

The ultimate back door

Who is this man?

Do you trust his

Software?

39
Photo from http://culturadigitalbau.wikispaces.com/
file/view/thompson.c1997.102634882.lg.jpg/212982274/thompson.c1997.102634882.lg.jpg

The ultimate back door

Ken Thompson
Co-Creator of
UNIX and C

Turing Award: 1983

40

The ultimate back door
41

 Ken Thompson discussed hidden back doors in a
famous Turing Award lecture
 He considered the Unix login program
 Showed how a macro substitution could insert a back

door
 Then pointed out that the macro preprocessor could

have a back door that does the macro substitution
 Then he applied this to the macro preprocessor itself
 Ended up with a vanilla-looking Unix system that would

always allow him to log in but where those lines of code
could only be discovered by examining the byte code

CS5412 Sping 2015

The ultimate back door
42

Compiler

011001001111010

The ultimate back door
43

Compiler

011001001111010

...
if(program == “login”)
 add-login-backdoor();
if(program == “compiler”)
 add-compiler-backdoor();

The ultimate back door

Ken Thompson
Co-Creator of
UNIX and C

Turing Award: 1983

44

The ultimate back door
45

 In general, covert “virtualized” platforms lurk in many
settings
 Virus could virtualize your machine
 Attacker with serious resources could sneak a monitoring

component into your printer or the disk drive itself
 Even the network could potentially “host” a covert computing

device and its own stealth network!

 Very hard to really secure modern computing systems.
Cloud actually helps because many operators have
resources to build their own specialized hardware

CS5412 Sping 2015

Recent concern

CS5412 Sping 2015

46

 Even common devices can have backdoors
 Line printers often have a wide variety of network APIs
 Network routers and firewalls
 The virtualization platforms that operate the cloud
 Web browsers…

 We seem to be surrounded by insecure components

What about virtualization as a tool?
47

 By running the user’s code in a virtual machine the
cloud gives us a way to firewall the user from other
users
 We share a machine but I can’t see your work and you

can’t see mine
 Virtualization code needs to block things like putting the

network into promiscuous mode (“monitoring” mode)
 Forces us to trust the VM hypervisor and the hardware

that supports virtualization, but gives “containment”
 Now a virus can only harm the user that “let it in”

CS5412 Sping 2015

Other forms of diversity
48

 Run different products that offer equivalent
functionality, like two versions of an email server
 Strange finding: researchers have shown that for many

applications, even versions created separately share bugs!

 Consider morphing the system calls: code would need to
be compiled on a per-instance basis but would protect
against attacks that require attacker to know local
system call numbering

 Vary thread scheduling order dynamically

CS5412 Sping 2015

Combining multiple methods
49

 This is sometimes called “defense in depth”

 The first line of defense is the dynamically
managed firewall: ideally, attack won’t get in
 But if it does, randomization has some chance of

defeating the attack one step later
 Each new obstacle is a hurdle for the attacker

 Will this stop attacks? Only simple ones... but most

attacks use simple methods!

CS5412 Sping 2015

Defense in depth
50

CS5412 Sping 2015

… but talented attackers still win
51

CS5412 Sping 2015

How can anyone trust the cloud?
52

 The cloud seems so risky that it makes no sense at
all to trust it in any way!

 Yet we seem to trust
it in many ways

 This puts the fate of your
company in the hands of
third parties!

CS5412 Sping 2015

For all its virtues, the cloud is risky!
53

 Categories of concerns
 Client platform inadequacies, code

download, browser insecurities
 Internet outages, routing problems,

vulnerability to DDoS
 Cloud platform might be operated by an untrustworthy third

party, could shift resources without warning, could abruptly
change pricing or go out of business

 Provider might develop its own scalability problems
 Consolidation creates monoculture threats
 Cloud security model is very narrow and might not cover

important usage cases

CS5412 Sping 2015

But the cloud is also good in some ways
54

 With a private server, DDoS attacks often succeed
 In contrast, it can be hard to DDoS a cloud
 The DDoS operator spends real money and won’t want

to waste the cash
 Thus because cloud is hard to DDoS, cloud emerges as

a very good response to DDoS worries

CS5412 Sping 2015

More good news
55

 Diversity can compensate for monoculture worries
 Elasticity is a unique capability not seen in other

settings
 Ability to host and compute on massive data sets is

very valuable
 Obviously, only of value if task is suited this style of

massive parallism, but many do fit the model

 ... the list goes on

CS5412 Sping 2015

So the cloud is tempting
56

 And cheaper, too!

 What’s not to love?
 Imagine that you work for a large company that is

healthy and has managed its own story in its own way
 Now the cloud suddenly offers absolutely unique

opportunities that we can’t access in any other way
 Should you recommend that your boss drink the potion?

CS5412 Sping 2015

To cloud, or not cloud…

CS5412 Sping 2015

57

 … maybe that’s the question

 … or maybe there is no other choice anymore

	CS5412: Dangers of Consolidation
	Are Clouds Inherently Dangerous?
	What Constitutes a “Monoculture”?
	Forms of monocultures
	Current example: OpenSSL
	What was the bug?
	Central lesson learned?
	Taking the larger view
	�Monoculture: A defense for configuration attacks.
	So monocultures help… for one case
	Viruses love monocultures
	Monocultures are a known risk
	Beyond the end...
	Stacks grow “downwards...”
	Stacks grow “downwards...”
	Stacks grow “downwards...”
	Why does this attack work?
	Bootstrapping concept
	Example
	What about data/heap?
	Example “attack opportunity”
	Why not just fix the compiler?
	Other examples of attacks
	Broader problem
	Cloud “permissiveness”
	How to attack a cloud
	What can we do about these issues?
	First, let’s stop the stack attack...
	Stack randomization
	.NET has automated diversity
	More recent work on diversity
	But this can’t stop all attacks
	Blocking SQL query injection?
	Other ideas: Castro and Costa
	What kind of “proof”?
	Back door attacks
	Stack diversity doesn’t stop these…
	Neither would better checking tools
	The ultimate back door
	The ultimate back door
	The ultimate back door
	The ultimate back door
	The ultimate back door
	The ultimate back door
	The ultimate back door
	Recent concern
	What about virtualization as a tool?
	Other forms of diversity
	Combining multiple methods
	Defense in depth
	… but talented attackers still win
	How can anyone trust the cloud?
	For all its virtues, the cloud is risky!
	But the cloud is also good in some ways
	More good news
	So the cloud is tempting
	To cloud, or not cloud…

