
CLOUD-SCALE
INFORMATION RETRIEVAL
Ken Birman, CS5412 Cloud Computing

CS5412 Spring 2015 1

Styles of cloud computing

 Think about Facebook…
 We normally see it in terms of pages that are image-

heavy
 But the tags and comments and likes create

“relationships” between objects within the system
 And FB itself tries to be very smart about what it shows

you in terms of notifications, stuff on your wall, timeline,
etc…

 How do they actually get data to users with such
impressive real-time properties? (often << 100ms!)

CS5412 Spring 2015

2

Facebook image “stack”

 Role is to serve images (photos, videos) for FB’s
hundreds of millions of active users
 About 80B large binary objects (“blob”) / day
 FB has a huge number of big and small data centers
 “Point of presense” or PoP: some FB owned equipment

normally near the user
 Akamai: A company FB contracts with that caches images
 FB resizer service: caches but also resizes images
 Haystack: inside data centers, has the actual pictures (a

massive file system)

CS5412 Spring 2015

3

Facebook “architecture”

 Think of Facebook as a giant distributed HashMap
 Key: photo URL (id, size, hints about where to find it...)
 Value: the blob itself

CS5412 Spring 2015

4

Facebook traffic for a week

 Client activity varies daily....

 ... and different photos have very different
popularity statistics

CS5412 Spring 2015

5

Observations

 There are huge daily, weekly, seasonal and
regional variations in load, but on the other hand
the peak loads turn out to be “similar” over
reasonably long periods like a year or two
 Whew! FB only needs to reinvent itself every few years
 Can plan for the worst-case peak loads…

 And during any short period, some images are way
more popular than others: Caching should help

CS5412 Spring 2015

6

Facebook’s goals?

 Get those photos to you rapidly

 Do it cheaply

 Build an easily scalable infrastructure
 With more users, just build more data centers

 ... they do this using ideas we’ve seen in cs5412!

CS5412 Spring 2015

7

Best ways to cache this data?

 Core idea: Build a distributed photo cache (like a
HashMap, indexed by photo URL)

 Core issue: We could cache data at various places
 On the client computer itself, near the browser
 In the PoP
 In the Resizer layer
 In front of Haystack

 Where’s the best place to cache images?
 Answer depends on image popularity...

CS5412 Spring 2015

8

Distributed Hash Tables

 It is easy for a program on biscuit.cs.cornell.edu to
send a message to a program on “jam.cs.cornell.edu”
 Each program sets up a “network socket
 Each machine has an IP address, you can look them up

and programs can do that too via a simple Java utility
 Pick a “port number” (this part is a bit of a hack)
 Build the message (must be in binary format)
 Java utils has a request

CS5412 Spring 2015

9

Distributed Hash Tables

 It is easy for a program on biscuit.cs.cornell.edu to
send a message to a program on “jam.cs.cornell.edu”

 ... so, given a key and a value
1. Hash the key
2. Find the server that “owns” the hashed value
3. Store the key,value pair in a “local” HashMap there

 To get a value, ask the right server to look up key

CS5412 Spring 2015

10

Distributed Hash Tables

dht.Put(“ken”,2110)
(“ken”, 2110)

dht.Get(“ken”)

“ken”.hashcode()%N=77
123.45.66.781 123.45.66.782 123.45.66.783 123.45.66.784

hashmap kept by
123.45.66.782

“ken”.hashcode()%N=77 CS5412 Spring 2015

11

How should we build this DHT?

 DHTs and related solutions seen so far in CS5412
 Chord, Pastry, CAN, Kelips
 MemCached, BitTorrent

 They differ in terms of the underlying assumptions
 Can we safely assume we know which machines will run

the DHT?
 For a P2P situation, applications come and go at will
 For FB, DHT would run “inside” FB owned data centers, so

they can just keep a table listing the active machines…

CS5412 Spring 2015

12

FB DHT approach

 DHT is actually split into many DHT subsystems
 Each subsystem lives in some FB data center, and there

are plenty of those (think of perhaps 50 in the USA)
 In fact these are really side by side clusters: when FB

builds a data center they usually have several nearby
buildings each with a data center in it, combined into a
kind of regional data center

 They do this to give “containment” (floods, fires) and
also so that they can do service and upgrades without
shutting things down (e.g. they shut down 1 of 5…)

CS5412 Spring 2015

13

Facebook “architecture”

 Think of Facebook as a giant distributed HashMap
 Key: photo URL (id, size, hints about where to find it...)
 Value: the blob itself

CS5412 Spring 2015

14

Facebook cache effectiveness

 Existing caches are very effective...
 ... but different layers are more effective for

images with different popularity ranks

CS5412 Spring 2015

15

Facebook cache effectiveness

 Each layer should
“specialize” in
different content.

 Photo age strongly
predicts effectiveness
of caching

CS5412 Spring 2015

16

Hypothetical changes to caching?

 We looked at the idea
of having Facebook
caches collaborate at
national scale…

 … and also at how to
vary caching based on the
“busyness” of the client

CS5412 Spring 2015

17

Social networking effect?

 Hypothesis: caching will work best for photos
posted by famous people with zillions of followers

 Actual finding: not really

CS5412 Spring 2015

18

Locality?

 Hypothesis: FB probably serves photos from close to
where you are sitting

 Finding: Not really...

 … just the same, if
the photo exists, it
finds it quickly

CS5412 Spring 2015

19

Can one conclude anything?

 Learning what patterns of access arise, and how
effective it is to cache given kinds of data at
various layers, we can customize cache strategies

 Each layer can look at an image and ask “should I
keep a cached copy of this, or not?”

 Smart decisions ⇒ Facebook is more effective!

CS5412 Spring 2015

20

Strategy varies by layer

 Browser should cache less popular content but not
bother to cache the very popular stuff

 Akamai/PoP layer should cache the most popular
images, etc...

 We also discovered that some layers should
“cooperatively” cache even over huge distances
 Our study discovered that if this were done in the

resizer layer, cache hit rates could rise 35%!

CS5412 Spring 2015

21

Overall picture in cloud computing

 Facebook example illustrates a style of working
 Identify high-value problems that matter to the

community because of the popularity of the service, the
cost of operating it, the speed achieved, etc

 Ask how best to solve those problems, ideally using
experiments to gain insight

 Then build better solutions

 Let’s look at another example of this pattern

CS5412 Spring 2015

22

Caching for TAO

 Facebook recently introduced a new kind of database
that they use to track groups
 Your friends
 The photos in which a user is tagged
 People who like Sarah Palin
 People who like Selina Gomez
 People who like Justin Beiber
 People who think Selina and Justin were a great couple
 People who think Sarah Palin and Justin should be a couple

CS5412 Spring 2015

23

How is TAO used?

 All sorts of FB operations require the system to
 Pull up some form of data
 Then search TAO for a group of things somehow

related to that data
 Then pull up fingernails from that group of things, etc

 So TAO works hard, and needs to deal with all sorts
of heavy loads
 Can one cache TAO data? Actually an open question

CS5412 Spring 2015

24

How FB does it now

 They create a bank of maybe 1000 TAO servers in
each data center

 Incoming queries always of the form “get group
associated with this key”

 They use consistent hashing to hash key to some
server, and then the server looks it up and returns
the data. For big groups they use indirection and
return a pointer to the data plus a few items

CS5412 Spring 2015

25

Challenges

 TAO has very high update rates
 Millions of events per second
 They use it internally too, to track items you looked at,

that you clicked on, sequences of clicks, whether you
returned to the prior page or continued deeper…

 So TAO sees updates at a rate even higher than the
total click rate for all of FBs users (billions, but only
hundreds of millions are online at a time, and only some
of them do rapid clicks… and of course people playing
games and so forth don’t get tracked this way)

CS5412 Spring 2015

26

Goals for TAO [Slides from a FB
talk given at Upenn in 2012]
 Provide a data store with a graph abstraction

(vertexes and edges), not keys+values
 Optimize heavily for reads

 More than 2 orders of magnitude more reads than
writes!

 Explicitly favor efficiency and availability over
consistency
 Slightly stale data is often okay (for Facebook)
 Communication between data centers in different

regions is expensive
27 CS5412 Spring 2015

Thinking about related objects

 We can represent related objects as a labeled, directed graph
 Entities are typically represented as nodes; relationships are

typically edges
 Nodes all have IDs, and possibly other properties

 Edges typically have values, possibly IDs and other properties

CS5412 Spring 2015

28

fan-of

friend-of friend-of

fan-of
fan-of

fan-of

fan-of

Alice Sunita Jose

Mikhail
Magna Carta

Facebook

Im
ag

es
 b

y
Jo

jo
 M

en
do

za
, C

re
at

iv
e

C
om

m
on

s
lic

en
se

d

TAO's data model

 Facebook's data model is exactly like that!
 Focuses on people, actions, and relationships

 These are represented as vertexes and edges in a graph

 Example: Alice visits a landmark with Bob
 Alice 'checks in' with her mobile phone

 Alice 'tags' Bob to indicate that he is with her

 Cathy added a comment

 David 'liked' the comment

29 CS5412 Spring 2015

vertexes and
edges in the
graph

TAO's data model and API

 TAO "objects" (vertexes)
 64-bit integer ID (id)

 Object type (otype)

 Data, in the form of key-value pairs

 Object API: allocate, retrieve, update, delete

 TAO "associations" (edges)
 Source object ID (id1)

 Association type (atype)

 Destination object ID (id2)

 32-bit timestamp

 Data, in the form of key-value pairs

 Association API: add, delete, change type

 Associations are unidirectional
 But edges often come in pairs (each edge type has an 'inverse type' for the reverse edge)

30 CS5412 Spring 2015

Example: Encoding in TAO

31 CS5412 Spring 2015

Data (KV pairs)

Inverse
edge types

Association queries in TAO

 TAO is not a general graph database
 Has a few specific (Facebook-relevant) queries 'baked into it'

 Common query: Given object and association type, return an association list
(all the outgoing edges of that type)
 Example: Find all the comments for a given checkin

 Optimized based on knowledge of Facebook's workload
 Example: Most queries focus on the newest items (posts, etc.)

 There is creation-time locality → can optimize for that!

 Queries on association lists:
 assoc_get(id1, atype, id2set, t_low, t_high)

 assoc_count(id1, atype)

 assoc_range(id1, atype, pos, limit) ← "cursor"

 assoc_time_range(id1, atype, high, low, limit)

32 CS5412 Spring 2015

TAO's storage layer

 Objects and associations are stored in mySQL

 But what about scalability?
 Facebook's graph is far too large for any single mySQL DB!!

 Solution: Data is divided into logical shards
 Each object ID contains a shard ID

 Associations are stored in the shard of their source object

 Shards are small enough to fit into a single mySQL instance!

 A common trick for achieving scalability

 What is the 'price to pay' for sharding?

33 CS5412 Spring 2015

Caching in TAO (1/2)

 Problem: Hitting mySQL is very expensive
 But most of the requests are read requests anyway!

 Let's try to serve these from a cache

 TAO's cache is organized into tiers
 A tier consists of multiple cache servers (number can vary)

 Sharding is used again here → each server in a tier is responsible
for a certain subset of the objects+associations

 Together, the servers in a tier can serve any request!

 Clients directly talk to the appropriate cache server
 Avoids bottlenecks!

 In-memory cache for objects, associations, and association counts (!)

34 CS5412 Spring 2015

Caching in TAO (2/2)
 How does the cache work?

 New entries filled on demand

 When cache is full, least recently used (LRU) object is evicted

 Cache is "smart": If it knows that an object had zero associ-ations of some
type, it knows how to answer a range query
 Could this have been done in Memcached? If so, how? If not, why not?

 What about write requests?
 Need to go to the database (write-through)

 But what if we're writing a bidirectonal edge?
 This may be stored in a different shard → need to contact that shard!

 What if a failure happens while we're writing such an edge?
 You might think that there are transactions and atomicity...

 ... but in fact, they simply leave the 'hanging edges' in place (why?)

 Asynchronous repair job takes care of them eventually

 35 CS5412 Spring 2015

Leaders and followers

 How many machines
should be in a tier?
 Too many is problematic:

More prone to hot spots, etc.

 Solution: Add another
level of hierarchy
 Each shard can have multiple

cache tiers: one leader, and multiple followers

 The leader talks directly to the mySQL database

 Followers talk to the leader

 Clients can only interact with followers

 Leader can protect the database from 'thundering herds'

36 CS5412 Spring 2015

Leaders/followers and consistency

 What happens now when a client writes?
 Follower sends write to the leader, who forwards to the DB

 Does this ensure consistency?

 Need to tell the other followers about it!
 Write to an object → Leader tells followers to invalidate any cached copies

they might have of that object

 Write to an association → Don't want to invalidate. Why?
 Followers might have to throw away long association lists!

 Solution: Leader sends a 'refill message' to followers
 If follower had cached that association, it asks the leader for an update

 What kind of consistency does this provide?

37 CS5412 Spring 2015

No!

Scaling geographically

 Facebook is a global service. Does this work?
 No - laws of physics are in the way!

 Long propagation delays, e.g., between Asia and
U.S.

 What tricks do we know that could help with this?

38 CS5412 Spring 2015

Scaling geographically

 Idea: Divide data
centers into
regions; have one
full replica of the
data in each region
 What could be a problem with this approach?

 Again, consistency!

 Solution: One region has the 'master' database; other regions forward
their writes to the master

 Database replication makes sure that the 'slave' databases eventually
learn of all writes; plus invalidation messages, just like with the
leaders and followers

39 CS5412 Spring 2015

Handling failures

 What if the master database fails?
 Can promote another region's database to be the

master
 But what about writes that were in progress during

switch?
 What would be the 'database answer' to this?
 TAO's approach:

40 CS5412 Spring 2015

Consistency in more detail
 What is the overall level of consistency?

 During normal operation: Eventual consistency (why?)

 Refills and invalidations are delivered 'eventually' (typical delay is less than
one second)

 Within a tier: Read-after-write (why?)

 When faults occur, consistency can degrade
 In some situations, clients can even observe values

'go back in time'!

 How bad is this (for Facebook specifically / in general)?

 Is eventual consistency always 'good enough'?
 No - there are a few operations on Facebook that need stronger consistency

(which ones?)

 TAO reads can be marked 'critical' ; such reads are handled directly by the
master.

41 CS5412 Spring 2015

Fault handling in more detail

 General principle: Best-effort recovery
 Preserve availability and performance, not consistency!

 Database failures: Choose a new master
 Might happen during maintenance, after crashes, repl. lag

 Leader failures: Replacement leader
 Route around the faulty leader if possible (e.g., go to DB)

 Refill/invalidation failures: Queue messages
 If leader fails permanently, need to invalidate cache for the entire shard

 Follower failures: Failover to other followers
 The other followers jointly assume responsibility for handling the failed

follower's requests

42 CS5412 Spring 2015

Production deployment at Facebook

 Impressive performance
 Handles 1 billion reads/sec and 1 million writes/sec!

 Reads dominate massively
 Only 0.2% of requests involve a write

 Most edge queries have zero results
 45% of assoc_count calls return 0...
 but there is a heavy tail: 1% return >500,000! (why?)

 Cache hit rate is very high
 Overall, 96.4%!

 43 CS5412 Spring 2015

TAO Summary

 The data model really does matter!
 KV pairs are nice and generic, but you sometimes can get better

performance by telling the storage system more about the kind of
data you are storing in it (→ optimizations!)

 Several useful scaling techniques
 "Sharding" of databases and cache tiers (not invented at Facebook,

but put to great use)

 Primary-backup replication to scale geographically

 Interesting perspective on consistency
 On the one hand, quite a bit of complexity & hard work to do well in

the common case (truly "best effort")

 But also, a willingness to accept eventual consistency
(or worse!) during failures, or when the cost would be high

44 CS5412 Spring 2015

HayStack Storage Layer

 Facebook stores a huge number of images
 In 2010, over 260 billion (~20PB of data)

 One billion (~60TB) new uploads each week

 How to serve requests for these images?
 Typical approach: Use a CDN (and Facebook does do that)

 45 CS5412 Spring 2015

Haystack challenges

 Very long tail: People often click around and access
very rarely seen photos

 Disk I/O is costly
 Haystack goal: one seek and one read per photo

 Standard file systems are way too costly and
inefficient
 Haystack response: Store images and data in long

“strips” (actually called “volumes”)
 Photo isn’t a file; it is in a strip at off=xxxx len=yyyy

CS5412 Spring 2015

46

Haystack: The Store (1/2)

 Volumes are simply very large files (~100GB)
 Few of them needed → In-memory data structures small

 Structure of each file:
 A header, followed by a number of 'needles' (images)

 Cookies included to prevent guessing attacks

 Writes simply append to the file; deletes simply set a flag
47 CS5412 Spring 2015

Haystack: The Store (2/2)

 Store machines have an in-memory index
 Maps photo IDs to offsets in the large files

 What to do when the machine is rebooted?
 Option #1: Rebuild from reading the files front-to-back

 Is this a good idea?

 Option #2: Periodically write the index to disk

 What if the index on disk is stale?
 File remembers where the last needle was appended

 Server can start reading from there

 Might still have missed some deletions - but the server can 'lazily' update
that when someone requests the deleted img

48 CS5412 Spring 2015

Recovery from failures

 Lots of failures to worry about
 Faulty hard disks, defective controllers, bad motherboards...

 Pitchfork service scans for faulty machines
 Periodically tests connection to each machine

 Tries to read some data, etc.

 If any of this fails, logical (!) volumes are marked read-only
 Admins need to look into, and fix, the underlying cause

 Bulk sync service can restore the full state
 ... by copying it from another replica

 Rarely needed

49 CS5412 Spring 2015

How well does it work?

 How much metadata does it use?
 Only about 12 bytes per image (in memory)
 Comparison: XFS inode alone is 536 bytes!
 More performance data in the paper

 Cache hit rates: Approx. 80%

50 CS5412 Spring 2015

Summary

 Different perspective from TAO's
 Presence of "long tail" → caching won't help as much

 Interesting (and unexpected) bottleneck
 To get really good scalability, you need to understand your system at all

levels!

 In theory, constants don't matter - but in practice, they do!
 Shrinking the metadata made a big difference to them,

even though it is 'just' a 'constant factor'

 Don't (exclusively) think about systems in terms of big-O notations!

51 CS5412 Spring 2015

	Cloud-Scale Information Retrieval
	Styles of cloud computing
	Facebook image “stack”
	Facebook “architecture”
	Facebook traffic for a week
	Observations
	Facebook’s goals?
	Best ways to cache this data?
	Distributed Hash Tables
	Distributed Hash Tables
	Distributed Hash Tables
	How should we build this DHT?
	FB DHT approach
	Facebook “architecture”
	Facebook cache effectiveness
	Facebook cache effectiveness
	Hypothetical changes to caching?
	Social networking effect?
	Locality?
	Can one conclude anything?
	Strategy varies by layer
	Overall picture in cloud computing
	Caching for TAO
	How is TAO used?
	How FB does it now
	Challenges
	Goals for TAO [Slides from a FB talk given at Upenn in 2012]
	Thinking about related objects
	TAO's data model
	TAO's data model and API
	Example: Encoding in TAO
	Association queries in TAO
	TAO's storage layer
	Caching in TAO (1/2)
	Caching in TAO (2/2)
	Leaders and followers
	Leaders/followers and consistency
	Scaling geographically
	Scaling geographically
	Handling failures
	Consistency in more detail
	Fault handling in more detail
	Production deployment at Facebook
	TAO Summary
	HayStack Storage Layer
	Haystack challenges
	Haystack: The Store (1/2)
	Haystack: The Store (2/2)
	Recovery from failures
	How well does it work?
	Summary

