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Styles of cloud computing 

 Think about Facebook… 
 We normally see it in terms of pages that are image-

heavy 
 But the tags and comments and likes create 

“relationships” between objects within the system 
 And FB itself tries to be very smart about what it shows 

you in terms of notifications, stuff on your wall, timeline, 
etc… 

 How do they actually get data to users with such 
impressive real-time properties? (often << 100ms!) 
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Facebook image “stack” 

 Role is to serve images (photos, videos) for FB’s 
hundreds of millions of active users 
 About 80B large binary objects (“blob”) / day 
 FB has a huge number of big and small data centers 
 “Point of presense” or PoP: some FB owned equipment 

normally near the user 
 Akamai: A company FB contracts with that caches images 
 FB resizer service: caches but also resizes images 
 Haystack: inside data centers, has the actual pictures (a 

massive file system) 

CS5412 Spring 2015 

3 



Facebook “architecture” 

 Think of Facebook as a giant distributed HashMap 
 Key: photo URL (id, size, hints about where to find it...) 
 Value: the blob itself 

CS5412 Spring 2015 

4 



Facebook traffic for a week 

 Client activity varies daily.... 
 
 
 
 
 

 ... and different photos have very different 
popularity statistics 
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Observations 

 There are huge daily, weekly, seasonal and 
regional variations in load, but on the other hand 
the peak loads turn out to be “similar” over 
reasonably long periods like a year or two 
 Whew!  FB only needs to reinvent itself every few years 
 Can plan for the worst-case peak loads… 

 

 And during any short period, some images are way 
more popular than others: Caching should help 
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Facebook’s goals? 

 Get those photos to you rapidly 
 

 Do it cheaply 
 

 Build an easily scalable infrastructure 
 With more users, just build more data centers 

 

 ... they do this using ideas we’ve seen in cs5412! 
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Best ways to cache this data? 

 Core idea: Build a distributed photo cache (like a 
HashMap, indexed by photo URL) 

 Core issue: We could cache data at various places 
 On the client computer itself, near the browser 
 In the PoP 
 In the Resizer layer 
 In front of Haystack 

 Where’s the best place to cache images?   
 Answer depends on image popularity... 
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Distributed Hash Tables 

 It is easy for a program on biscuit.cs.cornell.edu to 
send a message to a program on “jam.cs.cornell.edu” 
 Each program sets up a “network socket 
 Each machine has an IP address, you can look them up 

and programs can do that too via a simple Java utility 
 Pick a “port number” (this part is a bit of a hack) 
 Build the message (must be in binary format) 
 Java utils has a request  
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Distributed Hash Tables 

 It is easy for a program on biscuit.cs.cornell.edu to 
send a message to a program on “jam.cs.cornell.edu” 

 ... so, given a key and a value 
1. Hash the key 
2. Find the server that “owns” the hashed value  
3. Store the key,value pair in a “local” HashMap there 

 

 To get a value, ask the right server to look up key 
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Distributed Hash Tables 

dht.Put(“ken”,2110) 
(“ken”, 2110) 

dht.Get(“ken”) 

“ken”.hashcode()%N=77 
123.45.66.781        123.45.66.782        123.45.66.783        123.45.66.784  

hashmap kept by 
123.45.66.782 
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How should we build this DHT? 

 DHTs and related solutions seen so far in CS5412 
 Chord, Pastry, CAN, Kelips 
 MemCached, BitTorrent 

 

 They differ in terms of the underlying assumptions 
 Can we safely assume we know which machines will run 

the DHT? 
 For a P2P situation, applications come and go at will 
 For FB, DHT would run “inside” FB owned data centers, so 

they can just keep a table listing the active machines… 
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FB DHT approach 

 DHT is actually split into many DHT subsystems 
 Each subsystem lives in some FB data center, and there 

are plenty of those (think of perhaps 50 in the USA) 
 In fact these are really side by side clusters: when FB 

builds a data center they usually have several nearby 
buildings each with a data center in it, combined into a 
kind of regional data center 

 They do this to give “containment” (floods, fires) and 
also so that they can do service and upgrades without 
shutting things down (e.g. they shut down 1 of 5…) 
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Facebook “architecture” 

 Think of Facebook as a giant distributed HashMap 
 Key: photo URL (id, size, hints about where to find it...) 
 Value: the blob itself 

CS5412 Spring 2015 

14 



Facebook cache effectiveness 

 Existing caches are very effective... 
 ... but different layers are more effective for  

images with different popularity ranks 
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Facebook cache effectiveness 

 Each layer should 
“specialize” in 
different content.   
 
 

 Photo age strongly 
predicts effectiveness 
of caching 
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Hypothetical changes to caching? 

 We looked at the idea  
of having Facebook  
caches collaborate at 
national scale… 
 
 

 … and also at how to  
vary caching based on the 
“busyness” of the client 
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Social networking effect? 

 Hypothesis: caching will work best for photos 
posted by famous people with zillions of followers 
 

 Actual finding: not really 
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Locality? 

 Hypothesis: FB probably serves photos from close to 
where you are sitting 
 

 Finding: Not really... 
 
 

 … just the same, if 
the photo exists, it 
finds it quickly 

CS5412 Spring 2015 

19 



Can one conclude anything? 

 Learning what patterns of access arise, and how 
effective it is to cache given kinds of data at 
various layers, we can customize cache strategies 
 

 Each layer can look at an image and ask “should I 
keep a cached copy of this, or not?” 
 

 Smart decisions ⇒ Facebook is more effective! 
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Strategy varies by layer 

 Browser should cache less popular content but not 
bother to cache the very popular stuff 

 Akamai/PoP layer should cache the most popular 
images, etc... 
 

 We also discovered that some layers should 
“cooperatively” cache even over huge distances 
 Our study discovered that if this were done in the 

resizer layer, cache hit rates could rise 35%! 
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Overall picture in cloud computing 

 Facebook example illustrates a style of working 
 Identify high-value problems that matter to the 

community because of the popularity of the service, the 
cost of operating it, the speed achieved, etc 

 Ask how best to solve those problems, ideally using 
experiments to gain insight 

 Then build better solutions 
 

 Let’s look at another example of this pattern 
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Caching for TAO 

 Facebook recently introduced a new kind of database 
that they use to track groups 
 Your friends 
 The photos in which a user is tagged 
 People who like Sarah Palin 
 People who like Selina Gomez 
 People who like Justin Beiber 
 People who think Selina and Justin were a great couple 
 People who think Sarah Palin and Justin should be a couple 
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How is TAO used? 

 All sorts of FB operations require the system to 
 Pull up some form of data 
 Then search TAO for a group of things somehow 

related to that data 
 Then pull up fingernails from that group of things, etc 

 

 So TAO works hard, and needs to deal with all sorts 
of heavy loads 
 Can one cache TAO data?  Actually an open question 
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How FB does it now 

 They create a bank of maybe 1000 TAO servers in 
each data center 

 Incoming queries always of the form “get group 
associated with this key” 

 They use consistent hashing to hash key to some 
server, and then the server looks it up and returns 
the data.  For big groups they use indirection and 
return a pointer to the data plus a few items 
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Challenges 

 TAO has very high update rates 
 Millions of events per second 
 They use it internally too, to track items you looked at, 

that you clicked on, sequences of clicks, whether you 
returned to the prior page or continued deeper… 

 So TAO sees updates at a rate even higher than the 
total click rate for all of FBs users (billions, but only 
hundreds of millions are online at a time, and only some 
of them do rapid clicks… and of course people playing 
games and so forth don’t get tracked this way) 
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Goals for TAO [Slides from a FB 
talk given at Upenn in 2012] 
 Provide a data store with a graph abstraction 

(vertexes and edges), not keys+values 
 Optimize heavily for reads 

 More than 2 orders of magnitude more reads than 
writes! 

 Explicitly favor efficiency and availability over 
consistency 
 Slightly stale data is often okay (for Facebook) 
 Communication between data centers in different 

regions is expensive 
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Thinking about related objects 

 We can represent related objects as a labeled, directed graph 
 Entities are typically represented as nodes; relationships are 

typically edges 
 Nodes all have IDs, and possibly other properties 

 Edges typically have values, possibly IDs and other properties 
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TAO's data model 

 Facebook's data model is exactly like that! 
 Focuses on people, actions, and relationships 

 These are represented as vertexes and edges in a graph 

 Example: Alice visits a landmark with Bob 
 Alice 'checks in' with her mobile phone 

 Alice 'tags' Bob to indicate that he is with her 

 Cathy added a comment 

 David 'liked' the comment 
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TAO's data model and API 

 TAO "objects" (vertexes) 
 64-bit integer ID (id) 

 Object type (otype) 

 Data, in the form of key-value pairs 

 Object API: allocate, retrieve, update, delete 

 TAO "associations" (edges) 
 Source object ID (id1) 

 Association type (atype) 

 Destination object ID (id2) 

 32-bit timestamp 

 Data, in the form of key-value pairs 

 Association API: add, delete, change type 

 Associations are unidirectional 
 But edges often come in pairs (each edge type has an 'inverse type' for the reverse edge) 
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Example: Encoding in TAO 
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Association queries in TAO 

 TAO is not a general graph database 
 Has a few specific (Facebook-relevant) queries 'baked into it' 

 Common query: Given object and association type, return an association list 
(all the outgoing edges of that type) 
 Example: Find all the comments for a given checkin 

 Optimized based on knowledge of Facebook's workload 
 Example: Most queries focus on the newest items (posts, etc.) 

 There is creation-time locality → can optimize for that! 

 Queries on association lists: 
 assoc_get(id1, atype, id2set, t_low, t_high) 

 assoc_count(id1, atype) 

 assoc_range(id1, atype, pos, limit) ← "cursor" 

 assoc_time_range(id1, atype, high, low, limit) 
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TAO's storage layer 

 Objects and associations are stored in mySQL 
 

 But what about scalability? 
 Facebook's graph is far too large for any single mySQL DB!! 

 

 Solution: Data is divided into logical shards 
 Each object ID contains a shard ID 

 Associations are stored in the shard of their source object 

 Shards are small enough to fit into a single mySQL instance! 

 A common trick for achieving scalability 

 What is the 'price to pay' for sharding? 
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Caching in TAO (1/2) 

 Problem: Hitting mySQL is very expensive 
 But most of the requests are read requests anyway! 

 Let's try to serve these from a cache 

 TAO's cache is organized into tiers 
 A tier consists of multiple cache servers (number can vary) 

 Sharding is used again here → each server in a tier is responsible 
for a certain subset of the objects+associations 

 Together, the servers in a tier can serve any request! 

 Clients directly talk to the appropriate cache server 
 Avoids bottlenecks! 

 In-memory cache for objects, associations, and association counts (!) 
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Caching in TAO (2/2) 
 How does the cache work? 

 New entries filled on demand 

 When cache is full, least recently used (LRU) object is evicted 

 Cache is "smart": If it knows that an object had zero associ-ations of some 
type, it knows how to answer a range query 
 Could this have been done in Memcached? If so, how? If not, why not? 

 What about write requests? 
 Need to go to the database (write-through) 

 But what if we're writing a bidirectonal edge? 
 This may be stored in a different shard → need to contact that shard! 

 What if a failure happens while we're writing such an edge? 
 You might think that there are transactions and atomicity... 

 ... but in fact, they simply leave the 'hanging edges' in place (why?) 

 Asynchronous repair job takes care of them eventually 
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Leaders and followers 

 How many machines  
should be in a tier? 
 Too many is problematic:  

More prone to hot spots, etc. 

 Solution: Add another  
level of hierarchy 
 Each shard can have multiple  

cache tiers: one leader, and multiple followers 

 The leader talks directly to the mySQL database 

 Followers talk to the leader 

 Clients can only interact with followers 

 Leader can protect the database from 'thundering herds' 
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Leaders/followers and consistency 

 What happens now when a client writes? 
 Follower sends write to the leader, who forwards to the DB 

 Does this ensure consistency? 

 

 Need to tell the other followers about it! 
 Write to an object → Leader tells followers to invalidate any cached copies 

they might have of that object 

 Write to an association → Don't want to invalidate. Why? 
 Followers might have to throw away long association lists! 

 Solution: Leader sends a 'refill message' to followers 
 If follower had cached that association, it asks the leader for an update 

 What kind of consistency does this provide? 
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Scaling geographically 

 Facebook is a global service. Does this work? 
 No - laws of physics are in the way! 

 Long propagation delays, e.g., between Asia and 
U.S. 

 What tricks do we know that could help with this? 
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Scaling geographically 

 Idea: Divide data  
centers into  
regions; have one 
full replica of the  
data in each region 
 What could be a problem with this approach? 

 Again, consistency! 

 Solution: One region has the 'master' database; other regions forward 
their writes to the master 

 Database replication makes sure that the 'slave' databases eventually 
learn of all writes; plus invalidation messages, just like with the 
leaders and followers 
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Handling failures 

 What if the master database fails? 
 Can promote another region's database to be the 

master 
 But what about writes that were in progress during 

switch? 
 What would be the 'database answer' to this? 
 TAO's approach: 
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Consistency in more detail 
 What is the overall level of consistency? 

 During normal operation: Eventual consistency (why?) 

 Refills and invalidations are delivered 'eventually' (typical delay is less than 
one second) 

 Within a tier: Read-after-write (why?) 

 When faults occur, consistency can degrade 
 In some situations, clients can even observe values  

'go back in time'! 

 How bad is this (for Facebook specifically / in general)? 

 Is eventual consistency always 'good enough'? 
 No - there are a few operations on Facebook that need stronger consistency 

(which ones?) 

 TAO reads can be marked 'critical' ; such reads are handled directly by the 
master. 
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Fault handling in more detail 

 General principle: Best-effort recovery 
 Preserve availability and performance, not consistency! 

 Database failures: Choose a new master 
 Might happen during maintenance, after crashes, repl. lag 

 Leader failures: Replacement leader 
 Route around the faulty leader if possible (e.g., go to DB) 

 Refill/invalidation failures: Queue messages 
 If leader fails permanently, need to invalidate cache for the entire shard 

 Follower failures: Failover to other followers 
 The other followers jointly assume responsibility for handling the failed 

follower's requests 
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Production deployment at Facebook 

 Impressive performance 
 Handles 1 billion reads/sec and 1 million writes/sec! 

 Reads dominate massively 
 Only 0.2% of requests involve a write 

 Most edge queries have zero results 
 45% of assoc_count calls return 0... 
 but there is a heavy tail: 1% return >500,000! (why?) 

 Cache hit rate is very high 
 Overall, 96.4%! 
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TAO Summary 

 The data model really does matter! 
 KV pairs are nice and generic, but you sometimes can get better 

performance by telling the storage system more about the kind of 
data you are storing in it (→ optimizations!) 

 Several useful scaling techniques 
 "Sharding" of databases and cache tiers (not invented at Facebook, 

but put to great use) 

 Primary-backup replication to scale geographically 

 Interesting perspective on consistency 
 On the one hand, quite a bit of complexity & hard work to do well in 

the common case (truly "best effort") 

 But also, a willingness to accept eventual consistency 
(or worse!) during failures, or when the cost would be high 
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HayStack Storage Layer 

 Facebook stores a huge number of images 
 In 2010, over 260 billion (~20PB of data) 

 One billion (~60TB) new uploads each week 

 How to serve requests for these images? 
 Typical approach: Use a CDN (and Facebook does do that) 
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Haystack challenges 

 Very long tail: People often click around and access 
very rarely seen photos 

 Disk I/O is costly 
 Haystack goal: one seek and one read per photo 

 Standard file systems are way too costly and 
inefficient 
 Haystack response: Store images and data in long 

“strips” (actually called “volumes”) 
 Photo isn’t a file; it is in a strip at off=xxxx len=yyyy 
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Haystack: The Store (1/2) 

 Volumes are simply very large files (~100GB) 
 Few of them needed → In-memory data structures small 

 Structure of each file: 
 A header, followed by a number of 'needles' (images) 

 Cookies included to prevent guessing attacks 

 Writes simply append to the file; deletes simply set a flag 
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Haystack: The Store (2/2) 

 Store machines have an in-memory index 
 Maps photo IDs to offsets in the large files 

 What to do when the machine is rebooted? 
 Option #1: Rebuild from reading the files front-to-back 

 Is this a good idea? 

 Option #2: Periodically write the index to disk 

 What if the index on disk is stale? 
 File remembers where the last needle was appended 

 Server can start reading from there 

 Might still have missed some deletions - but the server can 'lazily' update 
that when someone requests the deleted img 
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Recovery from failures 

 Lots of failures to worry about 
 Faulty hard disks, defective controllers, bad motherboards... 

 

 Pitchfork service scans for faulty machines 
 Periodically tests connection to each machine 

 Tries to read some data, etc. 

 If any of this fails, logical (!) volumes are marked read-only 
 Admins need to look into, and fix, the underlying cause 

 

 Bulk sync service can restore the full state 
 ... by copying it from another replica 

 Rarely needed 
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How well does it work? 

 How much metadata does it use? 
 Only about 12 bytes per image (in memory) 
 Comparison: XFS inode alone is 536 bytes! 
 More performance data in the paper 

 

 Cache hit rates: Approx. 80% 
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Summary 

 Different perspective from TAO's 
 Presence of "long tail" → caching won't help as much 

 Interesting (and unexpected) bottleneck 
 To get really good scalability, you need to understand your system at all 

levels! 

 In theory, constants don't matter - but in practice, they do! 
 Shrinking the metadata made a big difference to them,  

even though it is 'just' a 'constant factor' 

 Don't (exclusively) think about systems in terms of big-O notations! 
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