CS5412 Spring 2015 (Cloud Computing: Birman) 1

CS5412: WHERE DID MY
PERFORMANCE GOz¢?

Lecture XVIII

Suppose you follow the rules...

You set out to build a fairly complex large-scale
system for some kind of important task

Maybe not as mission-critical as a power grid or an air
traffic control system...

... but on the other hand, smart cars are a hot topic,
and robots, and many of these play safety critical roles

You use clean-room techniques, object oriented
programming, cutting edge quality-assurance

CS5412 Spring 2015 (Cloud Computing: Birman)

... and when you are done, the system

is slow as molasses!
o

7 What makes complex systems so slow?

1 How can we run complex solutions in cloud settings
without paying a huge performance cost?

CS5412 Spring 2015 (Cloud Computing: Birman)

Example: A smart car platform

v

(@)
Multicast
Notifications ‘

(2, 3) System gateway accepts event, logs it locally and to a backup node

(1) Automobile notifies system of a new event

(4) Message bus (DDS) used to notify computational services
(5) Services compute routes, recommendations, etc.

(6) Multicast used to update knowledge database in the vehicle and also in other vehicles impacted by the event

CS5412 Spring 2015 (Cloud Computing: Birman)

Componentized design

There is a dominant trend towards building complex systems
from “components”, which can be entire programs and might
be coded in different languages. Each element in this
design is probably created from multiple components

For example you could have a C# library used from
C++ /CLI and talking to other helper components written in
C, standard C++ and Java, all on one platform

This implies frequent “domain crossing” events, which also
require serialization and deserialization

CS5412 Spring 2015 (Cloud Computing: Birman)

Componentized design
xm

01 This example comes dnin Server
from the ORACLE Soicts [o | | Ao |4
Java.com site

Application Server Instance
G

i“\ JZEE Resource
HTTP Server hﬁl’ Contalner Connnecior Adapters |
Wt

N . WWeb Server I : B [
] NOTICG Thqf IN Plugins s?*mlﬂfmj Services .:m“ [| :m;gu
HTTP/S / L roviders |

Wl

Gdd“iOll IO yOUI Cients ORB CE;mE s 8
el P“:: h:?‘ RDBEMS
COde Illele qle “Ic"Iy Java/ C [l : J Lifecyche
Iiﬂ':ﬂm e =|" | Listeners BCye

Tranzaction
s Clagges '!“ﬂﬂ
App Client Process, Thread ManagementRuntime Control

components S

[JavaZ Standard Edition, 1.4,

-1 Every modern system
looks like this!

CS5412 Spring 2015 (Cloud Computing: Birman)

Where would costs arise?¢

Some events involve capturing images, video, lidar,
etc. and might have large associated binary objects
To send messages in an object oriented setting

Need to “serialize” data into out-form, often costly and
the out-form can be much larger than the in-form

Send it on the wire or log it to disk
Later on reception (or reading it) must de-serialize

Question: how many times might this occur in this
kind of architecture?

CS5412 Spring 2015 (Cloud Computing: Birman)

Complex objects

A first thing to realize is that most objects are fairly
complex

A lidar image captured by a smart car would have
the radar data but might also include GPS
coordinates, vehicle orientation and speed, altitude,
angle of the sun, any filters being applied...

So these have many fields that must be serialized

CS5412 Spring 2015 (Cloud Computing: Birman)

High costs of serialization

We use the term serialization when a computing
system converts data from its internal form to some
kind of external form that can go on disk, on a
network, or be passed to a component in a
different language

The external representation needs to be self-
explanatory so that the receiving component can
use it to build an object that matches what was sent

A common style of representation is to use text and
format it using XML, like a web page

CS5412 Spring 2015 (Cloud Computing: Birman)

SOAP: Simple Object Access Protocol

SOAP is a widely supported standard for using this
kind of “web page” as the basis for one component
accessing another component

SOAP assumes an object to object style of
interaction, but in practice a component could have
many objects and can expose any of their static

interfaces if the arguments are all by value.

CS5412 Spring 2015 (Cloud Computing: Birman)

SOAP: Simple Object Access Protocol

0 SOAP is a widely supported standard for using this
kind of “web agcay '

| o B x o
accessing ano

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http:/ /schemas.xmlsoap.org/wsdl/" targetNamespace="http:/ f www.webserviceX.NET /"
xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/" xmIns:soap12="http:/ /schemas.xmlsoap.org/wsdl/soap12/"
xmlins:s="http:/ /www.w3.org/2001/XMLSchema" xmins:tns="http:/ /www.webserviceX.NET/"

xmlins:mime="http:/ /schemas.xmlsoap.org/wsdl/mime/" xmlins:soapenc="http:/ /schemas.xmlsoap.org/soap/encoding/"

xmlins:tm="http:/ /microsoft.com/wsdl/mime/textMatching/" xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/">
- <wsdl:types>

- <s:schema targetNamespace="http://www.webserviceX.NET/" elementFormDefault="qualified" >
- <s:element name="GetSunSetRiseTime">> — | i)
- <s:complexType> etSunSetRiseTime method
O assume oo

<s:element name="L" type="tns:LatLonDate" maxOccurs="1" minOccurs="1"/>
</s:sequence>

: : oo coeatcemion
I nte r G CT I O n, b u - <s:.c0mplexType name="LatLonDate">
- <s:sequence>

<s:element name="Latitude" type="s:float" maxOccurs="1" minOccurs=
° <s:element name="Longitude" type="s:
m G n y O I e C'rs <s:element name="SunSetTime" type="s:float" maxOccurs=

<s:element name=

minOccurs=
imeZone" type="s:int" maxOccurs="1" minOccurs="1"/>

<s:element name="Day" type=" t" maxOccurs="1" minOccurs="1"/>
I I <s:element name="Month" typ zint" maxQOccu
I n t e r 0 C e S I t <s:element name="Year" type="s:int" maxOccurs=
</s:sequence>

</s:complexType>

- <s:element name="GetSunSetRiseTimeResponse">
- <s:complexType>

- <s:sequence>

<s:element name="GetSunSetRiseTimeResult" type="tns:LatLonDate" maxOccurs="1" minOccurs="1"/>
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</wsdl:types>

v
CS5412 Spring 2015 !EIéua Eom{auﬁng: Elr"mqn)

SOAP representation

The SOAP request format includes things like the
service being accessed, the version number of the
API that the caller was compiled against, the
request being issued, and the arguments that were
supplied to the request.

Each argument could be a complex object, and it
can include references to other objects as long as
all of them are fully contained in a single “tree”

XML nesting is used to represent inner objects

CS5412 Spring 2015 (Cloud Computing: Birman)

SOAP representation

Later when the request finishes, the component can
send back a reply

This is done in a similar manner, using a SOAP response
object, again with a header and so forth

SOAP type checks at every stage

If a type exception arises, SOAP always throws it on
the caller side, not on the service side

This way if a server is upgraded, old clients that are
launched accidentally won’t crash it

CS5412 Spring 2015 (Cloud Computing: Birman)

What makes serialization costly?

Generating the SOAP message can be surprisingly
computationally expensive

Recursively we need to visit each element

For each one, make sure to output a “type description’
and then emit the corresponding object

Any value types will need to be converted accurately
into a text form. For example, we can’t lose floating
point precision in a SOAP request/response, unlike
when you print a floating point number on the console

All of this makes messages big and slow to create

CS5412 Spring 2015 (Cloud Computing: Birman)

Why not use binary format?

Older systems often used binary representations
and in fact there are many popular request/reply
formats and representations

The super efficient ones assume same data
representations on source and destination: same
programming language, version (patches included),
hardware architecture and operating system

But we can’t always be so lucky. SOAP is universal.

CS5412 Spring 2015 (Cloud Computing: Birman)

Costs of serialization, deserialization

CPU overheads to serialize (left) and deserialize

(right), 10,000 times

Average execution
time {ms)
12

10

0 200 400 500
Array length (n)

Average execution
time (ms)
5

45

a4

35

oint {.NET)

& double {NET)
o sting { NET)
+Int {Java)

* double (Java)
= string {Java)

0 200 400 600
Arraylength (n)

Estimating the Cost of XML Serialization of Java Obijects.

300

Imre, G. ; Charaf, H.; Lengyel, L. IEEE Engineering of Computer

Based Systems (ECBS-EERC), 201 3.

CS5412 Spring 2015 (Cloud Computing: Birman)

Example: A beverage distribution center

Suppose that we are just looking at a very simple
case, like records sent from the cash-register at the
Ithaca Imported Beverages company to the
database it uses for inventory

They specialize in imported beers, so consider costs
of serialization of a “beer record”

Example from M@X on DEV (www.maxondev.com)

CS5412 Spring 2015 (Cloud Computing: Birman)

Size overheads: A “beer” object

C# example of a class
that might describe o
Belgian beer

It has a brand, a level of
alcohol, a brewery, etc.

Notice that only some of
these are fields with
associated data and the
data is very simple in this
example!

CS5412 Spring 2015 (Cloud Computing: Birman)

Tabular summary of costs
N

11 Space costs in bytes, time costs in ms

Data Contract XML Binary JS0N - Newtonsoft JS0MN - Service5tack Protocol Buffer MsgPack
Size (Large) 364299 323981 204793 168429 ' 141 863 104191 99670
Deserialize (Large) 11469048 7.889384 1939763 10.715157 ' 5 731472 382069 6.778702
Serialize (Large) 4443877 5508091 13700064 5.025799 3.559688 1447036 1431415
Size (Small) ' 370 ' 298 ' 669 ' 102 ' 36 ' 62 ' 61
Deserialize (Small) 0012718 0015977 0019405 0.007171 ' 0.00174 0003883 0.002664
Serialize (Small) 0.004413 0021897 0021023 0.007081 0.003645 0000989 0.000907

CS5412 Spring 2015 (Cloud Computing: Birman)

Time cost: Serialize a “beer” object
N

Small data sizes Horizontal axis title / Left vertical axis title
B Size

CS5412 Spring 2015 (Cloud Computing: Birman)

Time cost: List of all 1610 Belgian beers M

http://en.wikipedia.org/wiki/List_of_Belgian_beer

Large data sizes Horizontal axis title / Left vertical axis title
B SizE

CS5412 Spring 2015 (Cloud Computing: Birman)

How many such operations occur?

ulticast

Noﬁficaho% . ‘ .

o We identified 6 steps, each requiring serialization/deserialization, but
if elements are componentized, the total could be 5x or 10x moreI

CS5412 Spring 2015 (Cloud Computing: Birman)

What can we do?

Even binary serialization wasn’t really so cheap

The only thing that turns out to be cheap is to send
very simple messages with very simple content, like
“one string”

So... can we magically transform our code into very
simple code? Introducing... logging!

CS5412 Spring 2015 (Cloud Computing: Birman)

Key ideas: Very simple

Write the large complex obijects into a reliable log
service, just once.

Logging means “append only, durable, file”
You write it once, can read it later

Now we substitute a URL for the large object.
We could modify the application itself

Or we could create a “wrapper” for the object itself or
for the libraries used in the application

CS5412 Spring 2015 (Cloud Computing: Birman)

Concept: A “wrapper”

0 Start with a complex application...
you really don’t want to modify it

0 ldentify some big objects it sends, and modify the
setter /getter methods to first “memory-fy” it

If we have the URL but not the object, fetch the object

Then perform action as usual

1 A lazy fetch! Question: why will this help?

CS5412 Spring 2015 (Cloud Computing: Birman)

Concept: A “wrapper”

71 On receipt, object has just the URL
o >

01 But if the application accesses data

we load the real content first -
o >

CS5412 Spring 2015 (Cloud Computing: Birman)

Can it be totally transparent?

In many cases, a wrapper can completely hide the
log from the real application

But if the object is modified, then transmitted, we
need to create a new logged version, and use a
new URL for it.

The log service won’t allow you to modify a logged
object, only to create “new” logged objects

CS5412 Spring 2015 (Cloud Computing: Birman)

Data center logging services

This area was very ad-hoc for a while

Then the Berkeley “log structured file system” was
proposed. LFS was really popular.

More recently, Corfu and Tango were introduced by
Microsoft. These are logging services for situations
where reliability and speed are paramount

The slides that follow are from Mahesh Balakrishnan,
one of the team leaders for this project at MSR

CS5412 Spring 2015 (Cloud Computing: Birman)

The shared log abstraction
-*

shared log API:
clients O = append(V)
V = read(O)

__ trim(O) //GC
O = check() //tail

remote read from anywhere

shared & & 4
log HEEEEEE

append to tail

4

clients can concurrently append to the log,
read from anywhere in its body, check the current
tail, and trim entries that are no longer needed.

Outline

a shared log is a powerful and versatile abstraction.
Tango (SOSP 201 3) provides transactional in-memory

data structures backed by a shared log.

the shared log abstraction can be implemented efficiently.
CORFU (NSDI 2012) is a scalable, distributed shared
log that supports millions of appends/sec.

a fast, scalable shared log enables fast, scalable
distributed services. Tango+CORFU supports millions of
transactions/sec.

The shared log approach
—

application application

a Tango object

. = NS 1. Tango objects are easy to use
view = = 2. Tango objects are easy to build

in-memory - -

data structure | |

+ @ o > @ O >

history the shared log is the source of
updates in ““lf - persistence

shared log - consistency

- elasticity
- atomicity and isolation

... across multiple objects
uncommitted commit

data record

no messages... only appends/reads on the shared log!

Tango objects are easy to use
—

7 implement standard interfaces (Java/C#
Collections)

0 linearizability for single opereAidimshood:

|
. -
example:]

U

| curowner = ownermap.get(“ledger”); I

if(curowner.equals(myname)) ﬁ
I ledger.add(item); l

Tango objects are easy to use
N

7 implement standard interfaces (Java/C#

Collections)
0 linearizability for single opémﬁdhmhwd: X e if r)ehad-
set (ownermap) has
u not changed in
example: f conflict window

TR.BeginTX();

curowner = ownermap.get(“ledger”); (]
if(curowner.equals(myname)) TT

ledger.add(item); |
status = TR.EndTX();

TX commit record:

speculative commit records: each client decides read-set: (ownermap, ver:2)
if the TX commits or aborts independently but write-set: (ledger, ver:6)

deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;
TangoRuntime *T;

int state;
void apply(void *X) {

state = *(int *)X;

}

object-specific state

invoked by Tango runtime
on EndTX to change state

void writeﬁegisfer (int newstate) {

!

T—>update_helper(&newstate , sizeof (int) , oid);]

mutator: updates TX
write-set, appends
to shared log

int readRegister () {
T—>query_helper(oid);
return state;

ANArRACCAY. ||V\h|q1'es
Other examples: t,
Java ConcurrentMap: 350 LOC 4te

Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Outline

a shared log is a powerful and versatile abstraction.
Tango (SOSP 201 3) provides transactional in-memory
data structures backed by a shared log.

the shared log abstraction can be implemented efficiently.

CORFU (NSDI 2012) is a scalable, distributed shared

log that supports millions of appends/sec.

a fast, scalable shared log enables fast, scalable
distributed services. Tango+CORFU supports millions of
transactions/sec.

The CORFU design

application

CORFU API:

O = append(V) smart client library

V = read(O)

trim(Q) //GC TT passive flash units:
O = check() write-once, sparse
/ /tail address spaces

read from anywhere append to tail

* 2+ 4
BEEEEEO

ach entry maps to a replica set
O 1 1P 1O O o
v v v)
e N S ST N %

4\

4

The CORFU protocol: reads

client
D1/ § D3/ | D5/ § D7/
E D2 g D4 D6 D8
page |L, L, L, -
Tango 0 L4 I-5 L6 -

CORFU library

read(D1/D2, page#)

Projection:

D8
D1 D2 CORFU cluster
D3 D4

D5 D6 L, L Lz‘ L, Ls Lé‘ . _»/

D7 D8

The CORFU protocol: appends

other clients can fill
R RN R T I COREUNGppend throughputsstof

by a crashed client 64-bit tokens issued per second

client

sequencer is only an
reserve next positionin (.o 0) | optimization! clients
log (e.g., 8) can probe for tail or
Tango .
O reconstruct it from
read(pos) {} append(val) flash units

Pl
~

D1 D3
CORFU library
>
Projection: write(D1/D2, val) D4
8

e . . CORFU cluster
D3 D4 fast reconfiguration

D5 D6 protocol: 10 ms for 32- L L “ -
drive cluster “ —-/

D7 D8

Chain replication in CORFU

client C1

0O O

safety under contention: durability:
if multiple clients try to write to same log data is only visible to reads if

position concurrently, only one wins entire chain has seen it
writes to already written pages => error reads on unwritten pages => error

requires write-once semantics from flash unit

Outline

a shared log is a powerful and versatile abstraction.
Tango (SOSP 201 3) provides transactional in-memory
data structures backed by a shared log.

the shared log abstraction can be implemented efficiently.
CORFU (NSDI 2012) is a scalable, distributed shared
log that supports millions of appends/sec.

a fast, scalable shared log enables fast, scalable

distributed services. Tango+CORFU supports millions of
transactions/sec.

a fast shared log isn't enough...
—

node 1 node 2
\Q:- allocation
aggregation |s A o A table the playback
free 9 A %’_P L bottleneck:
A A clients must read all
entries =2
free list S S0 SRS RS inbound NIC is a
bottleneck

10 solution: stream abstraction

10
- dnext(st id
As cORPSA oA s @Ps L readnext(sireamid)
- append(value, streamidl, ...)

B =—— 8 B > each client only plays entries

of interest to it

0
0
0

I

txes over streams
.

node 1 node 2
T B 1 B allocation
tree > A S~ A read A record
—— A write C with B B
N endTX commit/a
free list 2 C C C) C . C . C
bort bit
A skip C skip A C A skip C m skip B C B skip C skip B C m
commit /abort? commit /abort?

2 e
has A changed? node 1 helps node 2 has A changed?
yes, abort don’t know!

What about transactions?
Recent work (Tango, aka “Corfu-DB”) looked at this

They focused on back-end applications, but in fact
there is some talk of experimenting with this idea in
the first tier as well because it really is very fast

Basically, modified transactional implementation
uses Corfu for the “state of the transactional DB”

CS5412 Spring 2015 (Cloud Computing: Birman)

. distributed txes over streams

node 1 node 2
'b_‘-_.
oainTx B 1 B allocation

aggregation A egin | . T‘T < table
tree 2 AN A read A, | %

g A |B S

] write C

freelist=2 Cc o C C = J C C C

A sip C skbk A C A sip C gn skip B C B skip C skip B Zmn

commit /abort? node 1 and node 2 commit /abort?

has B changed? help each other! has A changed?
don’t know! don’t know!

distributed transactions without a distributed (commit) protocol!

Research insights

A durable, iterable total order (i.e., a shared log) is
a unifying abstraction for distributed systems,
subsuming the roles of many distributed protocols

It is possible to impose a total order at speeds
exceeding the 1/O capacity of any single machine

A total order is useful even when individual nodes
consume a subsequence of it

how far is CORFU from Paxos?

Route: 52.8 mi

This was your map view in B browser window.

how far is CORFU from Paxos?

]
CORFU scales the Paxos

acceptor role:
each consensus decision is (
made by a different set

of acceptors

streaming CORFU Lo Lt L LT

scales the Paxos learner D1

role: @ @

each learner plays o

A

subsequence of D2

commands D8

CORFU cluster

Conclusions

Wrap objects and use a logging service for higher
performance in cloud settings

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting

(durability, consistency, atomicity, isolation, elasticity...)

Tango objects are easy to use, easy to build, and fast...
... thanks to CORFU, a shared log without an | /O bottleneck

	CS5412: Where Did My Performance Go?
	Suppose you follow the rules…
	… and when you are done, the system is slow as molasses!
	Example: A smart car platform
	Componentized design
	Componentized design
	Where would costs arise?
	Complex objects
	High costs of serialization
	SOAP: Simple Object Access Protocol
	SOAP: Simple Object Access Protocol
	SOAP representation
	SOAP representation
	What makes serialization costly?
	Why not use binary format?
	Costs of serialization, deserialization
	Example: A beverage distribution center
	Size overheads: A “beer” object
	Tabular summary of costs
	Time cost: Serialize a “beer” object
	Time cost: List of all 1610 Belgian beers
	How many such operations occur?
	What can we do?
	Key ideas: Very simple
	Concept: A “wrapper”
	Concept: A “wrapper”
	Can it be totally transparent?
	Data center logging services
	The shared log abstraction
	Outline
	The shared log approach
	Tango objects are easy to use
	Tango objects are easy to use
	Tango objects are easy to build
	Outline
	The CORFU design
	The CORFU protocol: reads
	The CORFU protocol: appends
	Chain replication in CORFU
	Outline
	a fast shared log isn’t enough…
	txes over streams
	What about transactions?
	distributed txes over streams
	Research insights
	how far is CORFU from Paxos?
	how far is CORFU from Paxos?
	Conclusions

