
CS5412: WHERE DID MY
PERFORMANCE GO?
Ken Birman

1 CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture XVIII

Suppose you follow the rules…

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 You set out to build a fairly complex large-scale
system for some kind of important task
 Maybe not as mission-critical as a power grid or an air

traffic control system…
 … but on the other hand, smart cars are a hot topic,

and robots, and many of these play safety critical roles

 You use clean-room techniques, object oriented
programming, cutting edge quality-assurance

… and when you are done, the system
is slow as molasses!

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 What makes complex systems so slow?

 How can we run complex solutions in cloud settings
without paying a huge performance cost?

Example: A smart car platform

CS5412 Spring 2015 (Cloud Computing: Birman)

4

(1) Automobile notifies system of a new event

(2, 3) System gateway accepts event, logs it locally and to a backup node

(4) Message bus (DDS) used to notify computational services

(5) Services compute routes, recommendations, etc.

(6) Multicast used to update knowledge database in the vehicle and also in other vehicles impacted by the event

Gateway
(backup)

Gateway
(primary)

log

log

Message Bus
Computational

Services
Computational

Services

Computational
Services

Multicast
Notifications

1

2

3

3

4

5 5 5

6

Componentized design

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 There is a dominant trend towards building complex systems
from “components”, which can be entire programs and might
be coded in different languages. Each element in this
design is probably created from multiple components

 For example you could have a C# library used from
C++/CLI and talking to other helper components written in
C, standard C++ and Java, all on one platform

 This implies frequent “domain crossing” events, which also
require serialization and deserialization

Componentized design

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 This example comes
from the ORACLE
Java.com site

 Notice that in
addition to your
code there are many
other helper
components

 Every modern system
looks like this!

Where would costs arise?

CS5412 Spring 2015 (Cloud Computing: Birman)

7

 Some events involve capturing images, video, lidar,
etc. and might have large associated binary objects

 To send messages in an object oriented setting
 Need to “serialize” data into out-form, often costly and

the out-form can be much larger than the in-form
 Send it on the wire or log it to disk
 Later on reception (or reading it) must de-serialize

 Question: how many times might this occur in this
kind of architecture?

Complex objects

CS5412 Spring 2015 (Cloud Computing: Birman)

8

 A first thing to realize is that most objects are fairly
complex

 A lidar image captured by a smart car would have
the radar data but might also include GPS
coordinates, vehicle orientation and speed, altitude,
angle of the sun, any filters being applied…

 So these have many fields that must be serialized

High costs of serialization

CS5412 Spring 2015 (Cloud Computing: Birman)

9

 We use the term serialization when a computing
system converts data from its internal form to some
kind of external form that can go on disk, on a
network, or be passed to a component in a
different language

 The external representation needs to be self-
explanatory so that the receiving component can
use it to build an object that matches what was sent

 A common style of representation is to use text and
format it using XML, like a web page

SOAP: Simple Object Access Protocol

CS5412 Spring 2015 (Cloud Computing: Birman)

10

 SOAP is a widely supported standard for using this
kind of “web page” as the basis for one component
accessing another component

 SOAP assumes an object to object style of
interaction, but in practice a component could have
many objects and can expose any of their static
interfaces if the arguments are all by value.

SOAP: Simple Object Access Protocol

CS5412 Spring 2015 (Cloud Computing: Birman)

11

 SOAP is a widely supported standard for using this
kind of “web page” as the basis for one component
accessing another component

 SOAP assumes an object to object style of
interaction, but in practice a component could have
many objects and can expose any of their static
interfaces if the arguments are all by value.

SOAP representation

CS5412 Spring 2015 (Cloud Computing: Birman)

12

 The SOAP request format includes things like the
service being accessed, the version number of the
API that the caller was compiled against, the
request being issued, and the arguments that were
supplied to the request.

 Each argument could be a complex object, and it
can include references to other objects as long as
all of them are fully contained in a single “tree”

 XML nesting is used to represent inner objects

SOAP representation

CS5412 Spring 2015 (Cloud Computing: Birman)

13

 Later when the request finishes, the component can
send back a reply
 This is done in a similar manner, using a SOAP response

object, again with a header and so forth

 SOAP type checks at every stage
 If a type exception arises, SOAP always throws it on

the caller side, not on the service side
 This way if a server is upgraded, old clients that are

launched accidentally won’t crash it

What makes serialization costly?

CS5412 Spring 2015 (Cloud Computing: Birman)

14

 Generating the SOAP message can be surprisingly
computationally expensive
 Recursively we need to visit each element
 For each one, make sure to output a “type description”

and then emit the corresponding object
 Any value types will need to be converted accurately

into a text form. For example, we can’t lose floating
point precision in a SOAP request/response, unlike
when you print a floating point number on the console

 All of this makes messages big and slow to create

Why not use binary format?

CS5412 Spring 2015 (Cloud Computing: Birman)

15

 Older systems often used binary representations
and in fact there are many popular request/reply
formats and representations

 The super efficient ones assume same data
representations on source and destination: same
programming language, version (patches included),
hardware architecture and operating system

 But we can’t always be so lucky. SOAP is universal.

Costs of serialization, deserialization

CS5412 Spring 2015 (Cloud Computing: Birman)

16

 CPU overheads to serialize (left) and deserialize
(right), 10,000 times

Estimating the Cost of XML Serialization of Java Objects.
Imre, G. ; Charaf, H. ; Lengyel, L. IEEE Engineering of Computer
Based Systems (ECBS-EERC), 2013.

Example: A beverage distribution center

CS5412 Spring 2015 (Cloud Computing: Birman)

17

 Suppose that we are just looking at a very simple
case, like records sent from the cash-register at the
Ithaca Imported Beverages company to the
database it uses for inventory

 They specialize in imported beers, so consider costs
of serialization of a “beer record”

 Example from M@X on DEV (www.maxondev.com)

Size overheads: A “beer” object

CS5412 Spring 2015 (Cloud Computing: Birman)

18

 C# example of a class
that might describe a
Belgian beer

 It has a brand, a level of
alcohol, a brewery, etc.

 Notice that only some of
these are fields with
associated data and the
data is very simple in this
example!

Tabular summary of costs

CS5412 Spring 2015 (Cloud Computing: Birman)

19

 Space costs in bytes, time costs in ms

Time cost: Serialize a “beer” object

CS5412 Spring 2015 (Cloud Computing: Birman)

20

 http://en.wikipedia.org/wiki/List_of_Belgian_beer
Time cost: List of all 1610 Belgian beers

CS5412 Spring 2015 (Cloud Computing: Birman)

21

How many such operations occur?

CS5412 Spring 2015 (Cloud Computing: Birman)

22

Gateway
(backup)

Gateway
(primary)

log

log

Message Bus
Computational

Services
Computational

Services

Computational
Services

ulticast
Notifications

1

2

3

3

4

5 5 5

6

 We identified 6 steps, each requiring serialization/deserialization, but
if elements are componentized, the total could be 5x or 10x more!

What can we do?

CS5412 Spring 2015 (Cloud Computing: Birman)

23

 Even binary serialization wasn’t really so cheap

 The only thing that turns out to be cheap is to send
very simple messages with very simple content, like
“one string”

 So… can we magically transform our code into very
simple code? Introducing… logging!

Key ideas: Very simple

CS5412 Spring 2015 (Cloud Computing: Birman)

24

 Write the large complex objects into a reliable log
service, just once.
 Logging means “append only, durable, file”
 You write it once, can read it later

 Now we substitute a URL for the large object.
 We could modify the application itself
 Or we could create a “wrapper” for the object itself or

for the libraries used in the application

Concept: A “wrapper”

CS5412 Spring 2015 (Cloud Computing: Birman)

25

 Start with a complex application…
you really don’t want to modify it

 Identify some big objects it sends, and modify the
setter/getter methods to first “memory-fy” it
 If we have the URL but not the object, fetch the object
 Then perform action as usual

 A lazy fetch! Question: why will this help?

Concept: A “wrapper”

CS5412 Spring 2015 (Cloud Computing: Birman)

26

 On receipt, object has just the URL

 But if the application accesses data
we load the real content first

Application
Logic

Object

Wrapper

Application
Logic

“URL”

Wrapper

Log

Can it be totally transparent?

CS5412 Spring 2015 (Cloud Computing: Birman)

27

 In many cases, a wrapper can completely hide the
log from the real application

 But if the object is modified, then transmitted, we
need to create a new logged version, and use a
new URL for it.

 The log service won’t allow you to modify a logged
object, only to create “new” logged objects

Data center logging services

CS5412 Spring 2015 (Cloud Computing: Birman)

28

 This area was very ad-hoc for a while

 Then the Berkeley “log structured file system” was
proposed. LFS was really popular.

 More recently, Corfu and Tango were introduced by
Microsoft. These are logging services for situations
where reliability and speed are paramount
 The slides that follow are from Mahesh Balakrishnan,

one of the team leaders for this project at MSR

The shared log abstraction

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

append to tail read from anywhere

. . .

clients can concurrently append to the log,
read from anywhere in its body, check the current
tail, and trim entries that are no longer needed.

clients

remote
shared
log

Outline

• a shared log is a powerful and versatile abstraction.
Tango (SOSP 2013) provides transactional in-memory
data structures backed by a shared log.

• the shared log abstraction can be implemented efficiently.
CORFU (NSDI 2012) is a scalable, distributed shared
log that supports millions of appends/sec.

• a fast, scalable shared log enables fast, scalable
distributed services. Tango+CORFU supports millions of
transactions/sec.

The shared log approach

the shared log is the source of
- persistence
- consistency
- elasticity
- atomicity and isolation
 … across multiple objects

commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
updates in
shared log

no messages… only appends/reads on the shared log!

1. Tango objects are easy to use
2. Tango objects are easy to build

Tango runtime

application

Tango runtime

application

under the hood:

 implement standard interfaces (Java/C#
Collections)

 linearizability for single operations

Tango objects are easy to use

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
 ledger.add(item);

under the hood:

 implement standard interfaces (Java/C#
Collections)

 linearizability for single operations
 serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
 ledger.add(item);
status = TR.EndTX();

TX commits if read-
set (ownermap) has
not changed in
conflict window

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

speculative commit records: each client decides
if the TX commits or aborts independently but
deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]

Tango objects are easy to build

class TangoRegister {
 int oid;
 TangoRuntime ∗T;
 int state;
 void apply(void ∗X) {
 state = ∗(int ∗)X;
 }
 void writeRegister (int newstate) {
 T−>update_helper(&newstate , sizeof (int) , oid);
 }
 int readRegister () {
 T−>query_helper(oid);
 return state;
 }
 }

object-specific state

invoked by Tango runtime
on EndTX to change state

mutator: updates TX
write-set, appends

to shared log

accessor: updates
TX read-set,

returns local state

15 LOC == persistent, highly available, transactional register

Other examples:
Java ConcurrentMap: 350 LOC
Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Outline

• a shared log is a powerful and versatile abstraction.
Tango (SOSP 2013) provides transactional in-memory
data structures backed by a shared log.

• the shared log abstraction can be implemented efficiently.
CORFU (NSDI 2012) is a scalable, distributed shared
log that supports millions of appends/sec.

• a fast, scalable shared log enables fast, scalable
distributed services. Tango+CORFU supports millions of
transactions/sec.

The CORFU design

CORFU

Tango runtime

CORFU API:
O = append(V)
V = read(O)
trim(O) //GC
O = check()
//tail

application

4KB

append to tail read from anywhere

each entry maps to a replica set

passive flash units:
write-once, sparse
address spaces

smart client library

The CORFU protocol: reads

Tango

CORFU library

read(pos)

read(D1/D2, page#) Projection:
D1 D2
D3 D4
D5 D6
D7 D8

 D1 D3 D5
D7

 D2 D4 D6
D8

client

CORFU cluster

37

L0 L1 L2 L3 L4 L5 L6 L7 . .

D1/
D2

L0

L4

...

D3/
D4

L1

L5

...

D5/
D6

L2

L6

...

D7/
D8

L3

L7

...

page
0

page
1

…

The CORFU protocol: appends

Tango

CORFU library

append(val)

write(D1/D2, val) Projection:
D1 D2
D3 D4
D5 D6
D7 D8

reserve next position in
log (e.g., 8)

sequencer (T0)

 D1 D3 D5
D7

 D2 D4 D6
D8

CORFU append throughput: # of
64-bit tokens issued per second

client

CORFU cluster

38

read(pos)

sequencer is only an
optimization! clients
can probe for tail or
reconstruct it from
flash units

L0 L1 L2 L3 L4 L5 L6 L7 . .

other clients can fill
holes in the log caused
by a crashed client

fast reconfiguration
protocol: 10 ms for 32-
drive cluster

Chain replication in CORFU

client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one wins
writes to already written pages => error

client C3

durability:
data is only visible to reads if
entire chain has seen it
reads on unwritten pages => error

requires write-once semantics from flash unit

1
2

Outline

• a shared log is a powerful and versatile abstraction.
Tango (SOSP 2013) provides transactional in-memory
data structures backed by a shared log.

• the shared log abstraction can be implemented efficiently.
CORFU (NSDI 2012) is a scalable, distributed shared
log that supports millions of appends/sec.

• a fast, scalable shared log enables fast, scalable
distributed services. Tango+CORFU supports millions of
transactions/sec.

node 2 node 1

C C C C C C

B B

B B

B B
 A

A
A

A

A A

A B C B A C A B C

… …

the playback
bottleneck:
clients must read all
entries 
inbound NIC is a
bottleneck

B B B

C C C

A A A

solution: stream abstraction
- readnext(streamid)
- append(value, streamid1, …)

free list 

aggregation
tree 

 allocation
 table

each client only plays entries
of interest to it

A

A

C

a fast shared log isn’t enough…

10
Gbps

10
Gbps

skip B C B skip C skip B C A skip C skip A C A skip C skip B C B skip C skip B C 0 A skip C skip A C A skip C 0

node 2 node 1

 C C C C C C

B B

B B

B B
 A

 A
 A
 A

A A

beginTX
read A
write C
endTX

decision
record
with

commit/a
bort bit

commit/abort?
has A changed?

don’t know!

commit/abort?
has A changed?

yes, abort

txes over streams

free list 

aggregation
tree 

 allocation
 table

node 1 helps node 2

What about transactions?

CS5412 Spring 2015 (Cloud Computing: Birman)

43

 Recent work (Tango, aka “Corfu-DB”) looked at this

 They focused on back-end applications, but in fact
there is some talk of experimenting with this idea in
the first tier as well because it really is very fast

 Basically, modified transactional implementation
uses Corfu for the “state of the transactional DB”

skip B C B skip C skip B C A skip C skip A C A skip C skip B C B skip C skip B C 0 1 A skip C skip A C A skip C O 1

node 2 node 1

 C C C C C C

B B

B B

B B
 A

 A
 A
 A

A A

beginTX
read A,
B
write C
endTX

commit/abort?
has A changed?

don’t know!

commit/abort?
has B changed?

don’t know!

distributed txes over streams

free list 

aggregation
tree 

 allocation
 table

node 1 and node 2
help each other!

distributed transactions without a distributed (commit) protocol!

Research insights

 A durable, iterable total order (i.e., a shared log) is
a unifying abstraction for distributed systems,
subsuming the roles of many distributed protocols

 It is possible to impose a total order at speeds
exceeding the I/O capacity of any single machine

 A total order is useful even when individual nodes
consume a subsequence of it

how far is CORFU from Paxos?

how far is CORFU from Paxos?

L0 L1 L2 L3 L4 L5 L6 L7 . .

acceptors

learners

CORFU cluster

L0 L1 L2 L3 L4 L5 L6 L7 . .

 D1 D3 D5
D7

 D2 D4 D6
D8

acceptors

CORFU scales the Paxos
acceptor role:
each consensus decision is
made by a different set
of acceptors

streaming CORFU
scales the Paxos learner
role:
each learner plays a
subsequence of
commands

Conclusions

 Wrap objects and use a logging service for higher
performance in cloud settings

 Tango objects: data structures backed by a shared log

 key idea: the shared log does all the heavy lifting
(durability, consistency, atomicity, isolation, elasticity…)

 Tango objects are easy to use, easy to build, and fast…
… thanks to CORFU, a shared log without an I/O bottleneck

	CS5412: Where Did My Performance Go?
	Suppose you follow the rules…
	… and when you are done, the system is slow as molasses!
	Example: A smart car platform
	Componentized design
	Componentized design
	Where would costs arise?
	Complex objects
	High costs of serialization
	SOAP: Simple Object Access Protocol
	SOAP: Simple Object Access Protocol
	SOAP representation
	SOAP representation
	What makes serialization costly?
	Why not use binary format?
	Costs of serialization, deserialization
	Example: A beverage distribution center
	Size overheads: A “beer” object
	Tabular summary of costs
	Time cost: Serialize a “beer” object
	Time cost: List of all 1610 Belgian beers
	How many such operations occur?
	What can we do?
	Key ideas: Very simple
	Concept: A “wrapper”
	Concept: A “wrapper”
	Can it be totally transparent?
	Data center logging services
	The shared log abstraction
	Outline
	The shared log approach
	Tango objects are easy to use
	Tango objects are easy to use
	Tango objects are easy to build
	Outline
	The CORFU design
	The CORFU protocol: reads
	The CORFU protocol: appends
	Chain replication in CORFU
	Outline
	a fast shared log isn’t enough…
	txes over streams
	What about transactions?
	distributed txes over streams
	Research insights
	how far is CORFU from Paxos?
	how far is CORFU from Paxos?
	Conclusions

