
CS5412:
TRANSACTIONS (II)
Ken Birman

CS5412 Spring 2015 (Cloud Computing: Birman) 1

Lecture XVII

Today’s topic

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 How do cloud systems actually use transactions?
 Last time we saw the basic transactional model.

 But as we saw from reviewing Brewer’s CAP theorem
and the BASE methodology, transactions are sometimes
too expensive and not scalable enough

 This has led to innovations on the transaction side
 Snapshot isolation (related to serializability and ACID)
 Business transactions (related to BASE)

Snapshot Isolation

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 This idea started with discussion about lock-based
(pessimistic) concurrency control in comparison with
timestamp-based concurrency control
 With locking we incur high costs to obtain one lock at a

time. In distributed settings these costs are prohibitive.
 Deadlock is a risk, must use a deadlock avoidance scheme

 With timestamped concurrency control, we just pick a
time at which transactions will run.
 If times are picked to be unique, progress guaranteed

because some transaction will have the smallest TS and won’t
abort. But others may abort and be forced to retry

Pros and cons

CS5412 Spring 2015 (Cloud Computing: Birman)

4

 Each scheme attracted a following
 Locking is easy to design and works well if transactions

do a great deal of updates/writes
 But 2PC can be costly if transactions are doing mostly

reads and few writes

 In contrast, timestamp schemes work very well for read-
mostly or pure-read workloads and do a lot of rollback
if a workload has a mixture

Snapshot isolation

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 Arose from database products that offered
“multiversion” data
 Popular in the cloud, because we sometimes don’t want

to throw anything away
 Each transaction can be seen as moving the database

from a consistent state to a new consistent state
time

T1 T2 T3 T5

10:02.421 10:03.006 10:04.521

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99}

A multiversion database

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 Instead of just keeping the value of the variables in
the database, we track each revision and when the
change was committed

T1 T2 T3 T5

10:02.421 10:03.006 10:04.521

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99}

A 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 25

B 0 0 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8

C 0 0 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 99

10:08.571

Snapshot isolation idea

CS5412 Spring 2015 (Cloud Computing: Birman)

7

 For a read transaction, just pick a time at which the
reads should be executed (ideally, a recent time
corresponding to the commit of some transaction)
 If transactions really take us from consistent state to

consistent state, this will be a “safe” time to execute
 Reads don’t change the state so execute without risk of

needing to abort

 Then use locking to execute transactions that need
to perform update operations

Fancier snapshot isolation

CS5412 Spring 2015 (Cloud Computing: Birman)

8

 Often used for all reads, not just read-only
transactions

 Runs dynamically: Instead of picking just one time at
which to run, pick a “range” of times and track it

 A single window is used even if X accesses many
variables

Fancier snapshot isolation

CS5412 Spring 2015 (Cloud Computing: Birman)

9

 ... pick a “range” of times and track it
 E.g. transaction X might initially pick time range

[0...NOW]
 As X actually accesses variables, narrow the time

window of the transaction [max(old start, new start),
min(old end, new end)]
 E.g. X tries to read variable A and because A is locked for

update by transaction Y, reads A=2
 A=2 was valid from time [10:02.421,10:08.57]
 This narrows the window of validity for transaction X

How can a window vanish?

CS5412 Spring 2015 (Cloud Computing: Birman)

10

 Occurs if there just isn’t any point in the serialization
order at which this set of reads could have
happened

 Result of an update that invalidates some past read

 Causes transaction to abort

Complications

CS5412 Spring 2015 (Cloud Computing: Birman)

11

 In fact, snapshot isolation doesn’t guarantee full
serializability
 An update transaction might “invalidate” a read by

updating A at an unexpectedly early time
 Unless we check the read-only transactions won’t know

which ones to abort
 Real issue: X may already have finished

 If we use s.o. for reads in read/write transactions,
we get additional “bad cases”

Snapshot isolation is widely used

CS5412 Spring 2015 (Cloud Computing: Birman)

12

 Works well with multitier cloud computing
infrastructures
 Caching structures that track validity intervals for

cached variables are common
 Several papers have shown how to make snapshot

isolation fully serializable, but methods haven’t been
widely adopted (and may never be)

 Fits nicely with BASE: Basically available, soft state
replication with eventual consistency
 Often we don’t worry about consistency for the client

Consistency: Two “views”

CS5412 Spring 2015 (Cloud Computing: Birman)

13

 Client sees a snapshot of the database
that is internally consistent and “might” be valid

 Internally, database is genuinely serializable, but
the states clients saw aren’t tracked and might
sometimes become invalidated by an update

 Inconsistency is tolerated because it yields such big
speedups, although some clients see “wrong” results

Do clients need perfect truth?

CS5412 Spring 2015 (Cloud Computing: Birman)

14

 If so, one recent idea is to “validate” at commit time
 Many systems have a core transactional system that does updates
 Collections of read-only cached replicas are created at the edge where

clients reside
 Read-only transactions run on these (true) replicas, with no risk of error
 Read/write transactions track the versions read and the changes they

“want” to make (intentions list)
 Then package these intended changes as ultra-fast transactions to

be sent to the core system
 It checks that these versions are still current,and if so, applies the

updates, like in the Sinfonia system (discussed in class)
 If not, transaction “aborts” and must be retried

 Effect is to soak up as much hard work as possible at the edge

A picture of how this works

CS5412 Spring 2015 (Cloud Computing: Birman)

15

Core

Cached
replica

Cached
replica

read only transaction
can safely execute

on cache

(1) update
transaction runs

on cache first

(2) simplified transaction
lists versions to validate,
then values to write for

updates

(3) If successful,
Core reports commit

Core issue: How much contention?

CS5412 Spring 2015 (Cloud Computing: Birman)

16

 Root challenge is to understand
 How many updates will occur
 How often those updates conflict with concurrent reads

or with concurrent updates

 In most of today’s really massive cloud applications
either contention is very rare, in which case
transactional database solutions work, or we end up
cutting corners and relaxing consistency

Tradeoff: Scale versus consistency

CS5412 Spring 2015 (Cloud Computing: Birman)

17

 With a core system we can impose strong
consistency, but doing so limits scalability
 It needs to “validate” every update
 At some point it will get overloaded

 But if we don’t use a core system we can’t
guarantee consistency
 We may be able to design the application to tolerate

small inconsistencies. Many web systems work this way

Are there other options?

CS5412 Spring 2015 (Cloud Computing: Birman)

18

 How does this approach compare with scalable
replication using Paxos or Virtual Synchrony?

 In those systems the “contention” related to the
order in which multicasts were delivered
 Virtual synchrony strives to find ways of weakening

required ordering to gain performance
 Paxos is like serializability: One size fits all. But this is

precisely why Brewer ended up proposing CAP!

Business transactions

CS5412 Spring 2015 (Cloud Computing: Birman)

19

 The Web Services standards introduces (yet)
another innovation in the space

 They define a standard transactional API for cloud
computing, and this is widely supported by
transactional products of all kinds

 But they also define what are called “business
transactions”

Think of Expedia

CS5412 Spring 2015 (Cloud Computing: Birman)

20

 You book a trip to Costa Rica
 Flight down involves two separate carriers
 Fourteen nights in a total of three hotels
 Rental car for six days, bus tours for the rest
 Two rainforest tours, one with “zip line experience”
 Dinner reservation for two on your friend’s birthday at

the Inka Grill restaurant in San Jose
 Travel insurance covering stomach ailiments (costs extra)
 Special “babysit your dog” service in Ithaca

Should this be one transaction?

CS5412 Spring 2015 (Cloud Computing: Birman)

21

 Traditionally the transactional community would
have argued that cases like these are precisely
what transactions were invented for

 In practice... it makes little sense to use transactions
 Multiple services, perhaps with very distinct APIs (e.g.

may just need to phone the Inka Grill directly)
 Many ways to roll back if something goes wrong, like

just cancelling the car reservation

Concept of a business transaction

CS5412 Spring 2015 (Cloud Computing: Birman)

22

 Instead of a single transaction, models something like
this as a whole series of separate transactions
 Maybe in a few cases done as true transactions
 But others might be done in business-specific ways

 The standard assumes that each has its own
specialized rollback technology available

 It also requires a “reliable message queuing” system

Reliable message queuing

CS5412 Spring 2015 (Cloud Computing: Birman)

23

 Basically, email for programs
 Like with normal email, can send messages to addresses

and they will be held until read/deleted
 Spooler is assumed to be highly available and reliable
 Generally has some kind of multi-stage structure: spools

messages near the sender until handed off to the
server, and only deleted once safely logged

How this works

CS5412 Spring 2015 (Cloud Computing: Birman)

24

 Application “sends” a set of requests, like one email
each

 Spooler accepts the set and executes them one by
one, restarting any that are disrupted by crashes

 Handling of other kinds of failures (“Sorry sir, the
restaurant is fully booked that night”) is under
programmatic control
 You need to add details to tell the system what to do
 It won’t know that the Mexicali Cafe is a fallback

Business transactions

CS5412 Spring 2015 (Cloud Computing: Birman)

25

 We create a sequence of transactions and of the
associated undo actions for each
 Spool the series of transactions, linked by a business-

transaction-identifier
 As each is executed, the undo action is spooled but in a

“disabled” state
 On commit of the final transaction in the sequence, the

undo actions are deleted
 On abort, the undo actions are enabled and run as a

kind of reverse business transaction

Business transactions and BASE

CS5412 Spring 2015 (Cloud Computing: Birman)

26

 If our reservations go part-way through but then the
dog-sitter step fails, we end up leaving the world in
a kind of inconsistent state
 But soon after we run the undo actions and this reverses

the problems we created
 Even if someone failed to get a reservation at Inka

Grill because of your temporarily booked table, they
won’t be so surprised when they try again in a few
days and now a table is free

“Consistency is much overrated”

CS5412 Spring 2015 (Cloud Computing: Birman)

27

 We hear this a lot lately

 But you also need to wonder... what about
 Medical care systems that run on the Internet?
 Google’s self-driving cars?
 The smart power grid

If eBay (BASE) ran the power grid
28

 With BASE, control system could have “two voices”
 In physical infrastructure settings, consequences can

be very costly

“Switch on the 50KV Canadian bus”

“Canadian 50KV bus going offline”

Bang!

CS5412 Spring 2015 (Cloud Computing: Birman)

The big problem

CS5412 Spring 2015 (Cloud Computing: Birman)

29

 Scalable consistency is hard!
 Not impossible... but harder than weak consistency, or

no consistency.

 Today’s most profitable web ventures manage quite
well with weak models like BASE
 Run a lot of stuff in parallel
 Replicate data when you get a chance, but no rush
 Sweep any errors under the rug

The big problem

CS5412 Spring 2015 (Cloud Computing: Birman)

30

 Not everyone is focused on
the same property
 Some care mostly about scale and performance
 Some need really rapid response times
 Some genuinely do need consistency, but even then the

definition could include different notions of ordering and
durability

 Some need dynamic membership and others don’t

 No one-size-fits-all options here! But today’s cloud is
optimized for CAP, NoSQL, BASE…

What happens tomorrow?

CS5412 Spring 2015 (Cloud Computing: Birman)

31

 Nobody can compete with the cloud “price point”
 In modern technology, the cheapest solution always wins
 It becomes the only option available
 So everything migrates to the winner

 We’ve seen this again and again

 The cloud will win. You guys will build the winning
solutions, and they will be cloud based!

Why is it hard to cloudify high assurance?

CS5412 Spring 2015 (Cloud Computing: Birman)

32

 Let’s look at Isis2

 A cloud-based high assurance story...

 Can we view it as a blueprint for cloud-scale
resiliency of a kind the masses might adopt?

High assurance: Different perspectives

CS5412 Spring 2015 (Cloud Computing: Birman)

33

 A single platform has many kinds of “users”

Programmer: Depends on platform properties
but treats implementation as a black box.

End user: Seeks confidence that the system is safe
and that if it goes offline, a warning will appear

Protocol designer: Uses formal specification and
logic to prove implementation of protocols correct. Each brings different objectives

and requires different methods

Datacenter operator: Requires scalability,
xxxelasticity, and guarantees that applications
xxxxxxwon’t disrupt shared resources

http://images.google.com/imgres?imgurl=http://meetthetaylors.com/images/puzzled-man.jpg&imgrefurl=http://neverknewthat.wordpress.com/category/sql/&usg=__Kv_M1kmsrsSOuzcB8QkApJOty4c=&h=268&w=447&sz=81&hl=en&start=15&um=1&tbnid=KH80U7j7-f5cKM:&tbnh=76&tbnw=127&prev=/images?q=puzzled&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

Examples of these perspectives

CS5412 Spring 2015 (Cloud Computing: Birman)

34

 The end-user (the doctor) wants the system to be trustworthy.
Means different things for different use-scenarios.

 The developer (you) needs a way to reason about
applications you build. “My code will work because…”

 The tool builder (me, or Leslie) needs to prove the protocols
in Isis2 or Paxos correct. “Paxos is safe because…”

 The cloud computing vendor wants scalability without
hassles. Doesn’t want instability or other issues.

Summary

CS5412 Spring 2015 (Cloud Computing: Birman)

35

 We’ve seen several high assurance “stories”
 Paxos
 Virtual synchrony
 Transactions

 In each case the cloud community
says “too expensive” and even
proves theorems like CAP
 But while “just say no” is easy, results

are sometimes harmful.
 Must we accept a low-assurance cloud?

 Applications that need high assurance are coming

	CS5412: �Transactions (II)
	Today’s topic
	Snapshot Isolation
	Pros and cons
	Snapshot isolation
	A multiversion database
	Snapshot isolation idea
	Fancier snapshot isolation
	Fancier snapshot isolation
	How can a window vanish?
	Complications
	Snapshot isolation is widely used
	Consistency: Two “views”
	Do clients need perfect truth?
	A picture of how this works
	Core issue: How much contention?
	Tradeoff: Scale versus consistency
	Are there other options?
	Business transactions
	Think of Expedia
	Should this be one transaction?
	Concept of a business transaction
	Reliable message queuing
	How this works
	Business transactions
	Business transactions and BASE
	“Consistency is much overrated”
	If eBay (BASE) ran the power grid
	The big problem
	The big problem
	What happens tomorrow?
	Why is it hard to cloudify high assurance?
	High assurance: Different perspectives
	Examples of these perspectives
	Summary

