
CS5412:
TRANSACTIONS (I)
Ken Birman

CS5412 Spring 2015 (Cloud Computing: Birman) 1

Lecture XVI

Transactions

 A widely used reliability technology, despite the
BASE methodology we use in the first tier

 Goal for this week: in-depth examination of topic
 How transactional systems really work
 Implementation considerations
 Limitations and performance challenges
 Scalability of transactional systems

 Topic will span two lectures

CS5412 Spring 2015 (Cloud Computing: Birman)

2

Transactions

 There are several perspectives on how to achieve
reliability
 We’ve talked at some length about non-transactional

replication via multicast
 Another approach focuses on reliability of

communication channels and leaves application-
oriented issues to the client or server – “stateless”

 But many systems focus on the data managed by a
system. This yields transactional applications

CS5412 Spring 2015 (Cloud Computing: Birman)

3

Transactions on a single database:

 In a client/server architecture,
 A transaction is an execution of a single program of

the application(client) at the server.
 Seen at the server as a series of reads and writes.

 We want this setup to work when
 There are multiple simultaneous client transactions

running at the server.
 Client/Server could fail at any time.

CS5412 Spring 2015 (Cloud Computing: Birman)

4

The ACID Properties

 Atomicity
 All or nothing.

 Consistency:
 Each transaction, if executed by itself, maintains the

correctness of the database.
 Isolation (Serializability)

 Transactions won’t see partially completed results of other
non-commited transactions

 Durability
 Once a transaction commits, future transactions see its results

CS5412 Spring 2015 (Cloud Computing: Birman)

5

CAP conjecture

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 Recall Brewer’s CAP theorem: “you can’t use
transactions at large scale in the cloud”.

 We saw that the real issue is mostly in the highly
scalable and elastic outer tier (“stateless tier”).

 In fact cloud systems use transactions all the time,
but they do so in the “back end”, and they shield
that layer as much as they can to avoid overload

Transactions in the real world

 In cs5142 lectures, transactions are treated at the same
level as other techniques

 But in the real world, transactions represent a huge
chunk (in $ value) of the existing market for distributed
systems!
 The web is gradually starting to shift the balance (not by

reducing the size of the transaction market but by growing
so fast that it is catching up)

 On the web, we use transactions when we buy products
 So the real reason we don’t emphasize them is this issue

of them not working well in the first tier

CS5412 Spring 2015 (Cloud Computing: Birman)

7

The transactional model

 Applications are coded in a stylized way:
 begin transaction
 Perform a series of read, update operations
 Terminate by commit or abort.

 Terminology
 The application is the transaction manager
 The data manager is presented with operations from

concurrently active transactions
 It schedules them in an interleaved but serializable

order

CS5412 Spring 2015 (Cloud Computing: Birman)

8

A side remark

 Each transaction is built up incrementally
 Application runs
 And as it runs, it issues operations
 The data manager sees them one by one

 But often we talk as if we knew the whole thing at
one time
 We’re careful to do this in ways that make sense
 In any case, we usually don’t need to say anything until

a “commit” is issued

CS5412 Spring 2015 (Cloud Computing: Birman)

9

Transaction and Data Managers

Transactions

read
update

read

update

transactions are stateful: transaction “knows” about database contents and
updates

Data (and Lock) Managers

CS5412 Spring 2015 (Cloud Computing: Birman)

10

Typical transactional program

begin transaction;
x = read(“x-values”,);
y = read(“y-values”,);
z = x+y;
write(“z-values”, z,);

commit transaction;

CS5412 Spring 2015 (Cloud Computing: Birman)

11

What about locks?

 Unlike some other kinds of distributed systems,
transactional systems typically lock the data they
access

 They obtain these locks as they run:
 Before accessing “x” get a lock on “x”
 Usually we assume that the application knows enough

to get the right kind of lock. It is not good to get a
read lock if you’ll later need to update the object

 In clever applications, one lock will often cover
many objects

CS5412 Spring 2015 (Cloud Computing: Birman)

12

Locking rule

 Suppose that transaction T will access object x.
 We need to know that first, T gets a lock that “covers” x

 What does coverage entail?
 We need to know that if any other transaction T’ tries to

access x it will attempt to get the same lock

CS5412 Spring 2015 (Cloud Computing: Birman)

13

Examples of lock coverage

 We could have one lock per object
 … or one lock for the whole database
 … or one lock for a category of objects

 In a tree, we could have one lock for the whole tree
associated with the root

 In a table we could have one lock for row, or one for
each column, or one for the whole table

 All transactions must use the same rules!
 And if you will update the object, the lock must be

a “write” lock, not a “read” lock

CS5412 Spring 2015 (Cloud Computing: Birman)

14

Transactional Execution Log

 As the transaction runs, it creates a history of its
actions. Suppose we were to write down the
sequence of operations it performs.

 Data manager does this, one by one
 This yields a “schedule”

 Operations and order they executed
 Can infer order in which transactions ran

 Scheduling is called “concurrency control”

CS5412 Spring 2015 (Cloud Computing: Birman)

15

Observations

 Program runs “by itself”, doesn’t talk to others
 All the work is done in one program, in straight-line

fashion. If an application requires running several
programs, like a C compilation, it would run as
several separate transactions!

 The persistent data is maintained in files or
database relations external to the application

CS5412 Spring 2015 (Cloud Computing: Birman)

16

Serializability

 Means that effect of the interleaved execution is
indistinguishable from some possible serial execution
of the committed transactions

 For example: T1 and T2 are interleaved but it
“looks like” T2 ran before T1

 Idea is that transactions can be coded to be correct
if run in isolation, and yet will run correctly when
executed concurrently (and hence gain a speedup)

CS5412 Spring 2015 (Cloud Computing: Birman)

17

Need for serializable execution

Data manager interleaves operations to improve concurrency

DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2

T1: R1(X) R1(Y) W1(X) commit1

T2: R2(X) W2(X) W2(Y) commit2

CS5412 Spring 2015 (Cloud Computing: Birman)

18

Non serializable execution

Problem: transactions may “interfere”. Here, T2 changes x, hence T1 should have
either run first (read and write) or after (reading the changed value).

Unsafe! Not serializable

DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1

T1: R1(X) R1(Y) W1(X) commit1

T2: R2(X) W2(X) W2(Y) commit2

CS5412 Spring 2015 (Cloud Computing: Birman)

19

Serializable execution

Data manager interleaves operations to improve concurrency but schedules them so that
it looks as if one transaction ran at a time. This schedule “looks” like T2 ran first.

DB: R2(X) W2(X) R1(X) R1(Y) W2(Y) W1(X) commit2 commit1

T1: R1(X) R1(Y) W1(X) commit1

T2: R2(X) W2(X) W2(Y) commit2

CS5412 Spring 2015 (Cloud Computing: Birman)

20

Atomicity considerations

 If application (“transaction manager”) crashes, treat
as an abort

 If data manager crashes, abort any non-committed
transactions, but committed state is persistent
 Aborted transactions leave no effect, either in

database itself or in terms of indirect side-effects
 Only need to consider committed operations in

determining serializability

CS5412 Spring 2015 (Cloud Computing: Birman)

21

Components of transactional system

 Runtime environment: responsible for assigning
transaction id’s and labeling each operation with
the correct id.

 Concurrency control subsystem: responsible for
scheduling operations so that outcome will be
serializable

 Data manager: responsible for implementing the
database storage and retrieval functions

CS5412 Spring 2015 (Cloud Computing: Birman)

22

Transactions at a “single” database

 Normally use 2-phase locking or timestamps for
concurrency control

 Intentions list tracks “intended updates” for each
active transaction

 Write-ahead log used to ensure all-or-nothing
aspect of commit operations

 Can achieve thousands of transactions per second

CS5412 Spring 2015 (Cloud Computing: Birman)

23

Strict two-phase locking: how it works

 Transaction must have a lock on each data item it
will access.
 Gets a “write lock” if it will (ever) update the item
 Use “read lock” if it will (only) read the item. Can’t

change its mind!

 Obtains all the locks it needs while it runs and hold
onto them even if no longer needed

 Releases locks only after making commit/abort
decision and only after updates are persistent

CS5412 Spring 2015 (Cloud Computing: Birman)

24

Why do we call it “Strict” two phase?

 2-phase locking: Locks only acquired during the
‘growing’ phase, only released during the ‘shrinking’
phase.

 Strict: Locks are only released after the commit
decision
 Read locks don’t conflict with each other (hence T’ can

read x even if T holds a read lock on x)
 Update locks conflict with everything (are “exclusive”)

CS5412 Spring 2015 (Cloud Computing: Birman)

25

Strict Two-phase Locking

T1: begin read(x) read(y) write(x) commit

T2: begin read(x) write(x) write(y) commit

Acquires locks
Releases locks

CS5412 Spring 2015 (Cloud Computing: Birman)

26

Notes

 Notice that locks must be kept even if the same
objects won’t be revisited
 This can be a problem in long-running applications!
 Also becomes an issue in systems that crash and then

recover
Often, they “forget” locks when this happens
 Called “broken locks”. We say that a crash may “break”

current locks…

CS5412 Spring 2015 (Cloud Computing: Birman)

27

Why does strict 2PL imply serializability?

 Suppose that T’ will perform an operation that
conflicts with an operation that T has done:
 T’ will update data item X that T read or updated
 T updated item Y and T’ will read or update it

 T must have had a lock on X/Y that conflicts with the
lock that T’ wants

 T won’t release it until it commits or aborts
 So T’ will wait until T commits or aborts

CS5412 Spring 2015 (Cloud Computing: Birman)

28

Acyclic conflict graph implies serializability

 Can represent conflicts between operations and
between locks by a graph (e.g. first T1 reads x and
then T2 writes x)

 If this graph is acyclic, can easily show that
transactions are serializable

 Two-phase locking produces acyclic conflict graphs

CS5412 Spring 2015 (Cloud Computing: Birman)

29

Two-phase locking is “pessimistic”

 Acts to prevent non-serializable schedules from
arising: pessimistically assumes conflicts are fairly
likely

 Can deadlock, e.g. T1 reads x then writes y; T2
reads y then writes x. This doesn’t always deadlock
but it is capable of deadlocking
 Overcome by aborting if we wait for too long,
 Or by designing transactions to obtain locks in a known

and agreed upon ordering

CS5412 Spring 2015 (Cloud Computing: Birman)

30

Contrast: Timestamped approach

 Using a fine-grained clock, assign a “time” to each
transaction, uniquely. E.g. T1 is at time 1, T2 is at
time 2

 Now data manager tracks temporal history of each
data item, responds to requests as if they had
occured at time given by timestamp

 At commit stage, make sure that commit is consistent
with serializability and, if not, abort

CS5412 Spring 2015 (Cloud Computing: Birman)

31

Example of when we abort

 T1 runs, updates x, setting to 3
 T2 runs concurrently but has a larger timestamp. It

reads x=3
 T1 eventually aborts
 ... T2 must abort too, since it read a value of x that

is no longer a committed value
 Called a cascaded abort since abort of T1 triggers

abort of T2

CS5412 Spring 2015 (Cloud Computing: Birman)

32

Pros and cons of approaches

 Locking scheme works best when conflicts between
transactions are common and transactions are short-
running

 Timestamped scheme works best when conflicts are
rare and transactions are relatively long-running

 Weihl has suggested hybrid approaches but these
are not common in real systems

CS5412 Spring 2015 (Cloud Computing: Birman)

33

Intentions list concept

 Idea is to separate persistent state of database
from the updates that have yet to commit
 Many systems update in place, roll back on abort. For

these, a log of prior versions is needed.
 A few systems flip this and keep a list of what changes

they intend to make. Intensions list may simply be the
in-memory cached database state (e.g. change a
cached copy, but temporarily leave the disk copy).

 Either way, as a transaction runs it builds a set of
updates that it intends to commit, if it commits

CS5412 Spring 2015 (Cloud Computing: Birman)

34

Role of write-ahead log

 Used to save either old or new state of database to
either permit abort by rollback (need old state) or
to ensure that commit is all-or-nothing (by being
able to repeat updates until all are completed)

 Rule is that log must be written before database is
modified

 After commit record is persistently stored and all
updates are done, can erase log contents

CS5412 Spring 2015 (Cloud Computing: Birman)

35

Structure of a transactional system

application

cache (volatile) lock records

updates (persistent)

database
log

CS5412 Spring 2015 (Cloud Computing: Birman)

36

Recovery?

 Transactional data manager reboots
 It rescans the log

 Ignores non-committed transactions
 Reapplies any updates
 These must be “idempotent”
 Can be repeated many times with exactly the same effect as a

single time
 E.g. x := 3, but not x := x.prev+1

 Then clears log records
 (In normal use, log records are deleted once transaction

commits)

CS5412 Spring 2015 (Cloud Computing: Birman)

37

Transactions in distributed systems

 Notice that client and data manager might not run on
same computer
 Both may not fail at same time
 Also, either could timeout waiting for the other in normal

situations

 When this happens, we normally abort the transaction
 Exception is a timeout that occurs while commit is being

processed
 If server fails, one effect of crash is to break locks even for

read-only access

CS5412 Spring 2015 (Cloud Computing: Birman)

38

Transactions in distributed systems

 What if data is on multiple servers?
 In a non-distributed system, transactions run against a

single database system
 Indeed, many systems structured to use just a single

operation – a “one shot” transaction!

 In distributed systems may want one application to talk
to multiple databases

CS5412 Spring 2015 (Cloud Computing: Birman)

39

Transactions in distributed systems

 Main issue that arises is that now we can have
multiple database servers that are touched by one
transaction

 Reasons?
 Data spread around: each owns subset
 Could have replicated some data object on multiple

servers, e.g. to load-balance read access for large
client set

 Might do this for high availability
 Solve using 2-phase commit protocol!

CS5412 Spring 2015 (Cloud Computing: Birman)

40

Unilateral abort

 Any data manager can unilaterally abort a
transaction until it has said “prepared”

 Useful if transaction manager seems to have failed
 Also arises if data manager crashes and restarts

(hence will have lost any non-persistent intended
updates and locks)

 Implication: even a data manager where only reads
were done must participate in 2PC protocol!

CS5412 Spring 2015 (Cloud Computing: Birman)

41

Transactions on distributed objects

 Idea was proposed by Liskov’s Argus group and
then became popular again recently

 Each object translates an abstract set of operations
into the concrete operations that implement it

 Result is that object invocations may “nest”:
 Library “update” operations, do
 A series of file read and write operations that do
 A series of accesses to the disk device

CS5412 Spring 2015 (Cloud Computing: Birman)

42

Nested transactions

 Call the traditional style of flat transaction a “top
level” transaction
 Argus short hand: “actions”

 The main program becomes the top level action
 Within it objects run as nested actions

CS5412 Spring 2015 (Cloud Computing: Birman)

43

Arguments for nested transactions

 It makes sense to treat each object invocation as a
small transaction: begin when the invocation is done,
and commit or abort when result is returned
 Can use abort as a “tool”: try something; if it doesn’t

work just do an abort to back out of it.
 Turns out we can easily extend transactional model to

accommodate nested transactions
 Liskov argues that in this approach we have a

simple conceptual framework for distributed
computing

CS5412 Spring 2015 (Cloud Computing: Birman)

44

Nested transactions: picture

T1: fetch(“ken”) set_salary(“ken”, 100000) ... commit

open_file ... seek... read seek... write...

... lower level operations...

CS5412 Spring 2015 (Cloud Computing: Birman)

45

Observations

 Can number operations using the obvious notation
 T1, T1.2.1.....

 Subtransaction commit should make results visible to
the parent transaction

 Subtransaction abort should return to state when
subtransaction (not parent) was initiated

 Data managers maintain a stack of data versions

CS5412 Spring 2015 (Cloud Computing: Birman)

46

Stacking rule

 Abstractly, when subtransaction starts, we push a
new copy of each data item on top of the stack for
that item

 When subtransaction aborts we pop the stack
 When subtransaction commits we pop two items and

push top one back on again
 In practice, can implement this much more

efficiently!!!

CS5412 Spring 2015 (Cloud Computing: Birman)

47

Data objects viewed as “stacks”

• Transaction T0 wrote 6 into x

• Transaction T1 spawned subtransactions that
wrote new values for y and z

x y z

17

6

1

13

-2

18

30

15

T0

T1.1.1

T1.1T1.1

T1.1.1

CS5412 Spring 2015 (Cloud Computing: Birman)

48

Locking rules?

 When subtransaction requests lock, it should be
able to obtain locks held by its parent

 Subtransaction aborts, locks return to “prior state”
 Subtransaction commits, locks retained by parent
 ... Moss has shown that this extended version of 2-

phase locking guarantees serializability of nested
transactions

CS5412 Spring 2015 (Cloud Computing: Birman)

49

Relatively recent developments

CS5412 Spring 2015 (Cloud Computing: Birman)

50

 Many cloud-computing solutions favor non-
transactional tables to reduce delays even if
consistency is much weaker
 Called the NoSQL movement: “Not SQL”
 Application must somehow cope with inconsistencies and

failure issues. E.g. your problem, not the platform’s.

 Also widely used: a model called “Snapshot
isolation”. Gives a form of consistency for reads
and for updates, but not full serializability

Summary

CS5412 Spring 2015 (Cloud Computing: Birman)

51

 Transactional model lets us deal with large
databases or other large data stores

 Provides a model for achieving high concurrency

 Concurrent transactions won’t stumble over one-
another because ACID model offers efficient ways
to achieve required guarantees

	CS5412: �Transactions (I)
	Transactions
	Transactions
	Transactions on a single database:
	The ACID Properties
	CAP conjecture
	Transactions in the real world
	The transactional model
	A side remark
	Transaction and Data Managers
	Typical transactional program
	What about locks?
	Locking rule
	Examples of lock coverage
	Transactional Execution Log
	Observations
	Serializability
	Need for serializable execution
	Non serializable execution
	Serializable execution
	Atomicity considerations
	Components of transactional system
	Transactions at a “single” database
	Strict two-phase locking: how it works
	Why do we call it “Strict” two phase?
	Strict Two-phase Locking
	Notes
	Why does strict 2PL imply serializability?
	Acyclic conflict graph implies serializability
	Two-phase locking is “pessimistic”
	Contrast: Timestamped approach
	Example of when we abort
	Pros and cons of approaches
	Intentions list concept
	Role of write-ahead log
	Structure of a transactional system
	Recovery?
	Transactions in distributed systems
	Transactions in distributed systems
	Transactions in distributed systems
	Unilateral abort
	Transactions on distributed objects
	Nested transactions
	Arguments for nested transactions
	Nested transactions: picture
	Observations
	Stacking rule
	Data objects viewed as “stacks”
	Locking rules?
	Relatively recent developments
	Summary

