
CS5412:
BIMODAL MULTICAST
ASTROLABE

Ken Birman

CS5412 Spring 2015 1

Lecture XIX

Gossip 201

 Recall from early in the semester that gossip
spreads in log(system size) time

 But is this actually “fast”?
%

 in
fe

ct
ed

0.0

1.0

Time →

CS5412 Spring 2015

2

Gossip in distributed systems

 Log(N) can be a very big number!
 With N=100,000, log(N) would be 12
 So with one gossip round per five seconds, information

needs one minute to spread in a large system!

 Some gossip protocols combine pure gossip with an
accelerator
 A good way to get the word out quickly

CS5412 Spring 2015

3

Bimodal Multicast

CS5412 Spring 2015

4

 To send a message, this protocol uses IP multicast

 We just transmit it without delay and we don’t
expect any form of responses
 Not reliable, no acks
 No flow control (this can be an issue)
 In data centers that lack IP multicast, can simulate by

sending UDP packets 1:1 without acks

What’s the cost of an IP multicast?

CS5412 Spring 2015

5

 In principle, each Bimodal Multicast packet traverses
the relevant data center links and routers just once
per message

 So this is extremely cheap... but how do we deal
with systems that didn’t receive the multicast?

Making Bimodal Multicast reliable

CS5412 Spring 2015

6

 We can use gossip!

 Every node tracks the membership of the target
group (using gossip, just like with Kelips, the DHT we
studied early in the semester)
 Bootstrap by learning “some node addresses” from

some kind of a server or web page
 But then exchange of gossip used to improve accuracy

Making Bimodal Multicast reliable

CS5412 Spring 2015

7

 Now, layer in a gossip mechanism that gossips
about multicasts each node knows about
 Rather than sending the multicasts themselves, the gossip

messages just talk about “digests”, which are lists
 Node A might send node B

 I have messages 1-18 from sender X
 I have message 11 from sender Y
 I have messages 14, 16 and 22-71 from sender Z

 Compactly represented...

 This is a form of “push” gossip

Making Bimodal Multicast reliable

CS5412 Spring 2015

8

 On receiving such a gossip message, the recipient
checks to see which messages it has that the gossip
sender lacks, and vice versa

 Then it responds
 I have copies of messages M, M’and M’’ that you seem

to lack
 I would like a copy of messages N, N’ and N’’ please

 An exchange of the actual messages follows

Optimizations

CS5412 Spring 2015

9

 Bimodal Multicast resends using IP multicast if there
is “evidence” that a few nodes may be missing the
same thing
 E.g. if two nodes ask for the same retransmission
 Or if a retransmission shows up from a very remote

node (IP multicast doesn’t always work in WANs)

 It also prioritizes recent messages over old ones
 Reliability has a “bimodal” probability curve: either

nobody gets a message or nearly everyone does

lpbcast variation

CS5412 Spring 2015

10

 In this variation on Bimodal Multicast instead of
gossiping with every node in a system, we modify
the Bimodal Multicast protocol
 It maintains a “peer overlay”: each member only

gossips with a smaller set of peers picked to be
reachable with low round-trip times, plus a second small
set of remote peers picked to ensure that the graph is
very highly connected and has a small diameter

 Called a “small worlds” structure by Jon Kleinberg

 Lpbcast is often faster, but equally reliable!

Speculation... about speed

CS5412 Spring 2015

11

 When we combine IP multicast with gossip we try to
match the tool we’re using with the need

 Try to get the messages through fast... but if loss
occurs, try to have a very predictable recovery cost
 Gossip has a totally predictable worst-case load
 This is appealing at large scales

 How can we generalize this concept?

A thought question

 What’s the best way to
 Count the number of nodes in a system?
 Compute the average load, or find the most loaded

nodes, or least loaded nodes?

 Options to consider
 Pure gossip solution
 Construct an overlay tree (via “flooding”, like in our

consistent snapshot algorithm), then count nodes in the
tree, or pull the answer from the leaves to the root…

CS5412 Spring 2015

12

… and the answer is

 Gossip isn’t very good for some of these tasks!
 There are gossip solutions for counting nodes, but they

give approximate answers and run slowly
 Tricky to compute something like an average because

of “re-counting” effect, (best algorithm: Kempe et al)
 On the other hand, gossip works well for finding the

c most loaded or least loaded nodes (constant c)

 Gossip solutions will usually run in time O(log N)
and generally give probabilistic solutions

CS5412 Spring 2015

13

Yet with flooding… easy!

 Recall how flooding works

 Basically: we construct a tree by pushing data towards
the leaves and linking a node to its parent when that
node first learns of the flood

 Can do this with a fixed topology or in a gossip style
by picking random next hops

1

3

3

3

2

2

Labels: distance of the node from
the root

CS5412 Spring 2015

14

This is a “spanning tree”

 Once we have a spanning tree
 To count the nodes, just have leaves report 1 to their

parents and inner nodes count the values from their
children

 To compute an average, have the leaves report their
value and the parent compute the sum, then divide by
the count of nodes

 To find the least or most loaded node, inner nodes
compute a min or max…

 Tree should have roughly log(N) depth, but once we
build it, we can reuse it for a while

CS5412 Spring 2015

15

Not all logs are identical!

 When we say that a gossip protocol needs
time log(N) to run, we mean log(N) rounds
 And a gossip protocol usually sends one message every

five seconds or so, hence with 100,000 nodes, 60 secs
 But our spanning tree protocol is constructed using a

flooding algorithm that runs in a hurry
 Log(N) depth, but each “hop” takes perhaps a

millisecond.
 So with 100,000 nodes we have our tree in 12 ms and

answers in 24ms!

CS5412 Spring 2015

16

Insight?

 Gossip has time complexity O(log N) but the
“constant” can be rather big (5000 times larger in
our example)

 Spanning tree had same time complexity but a tiny
constant in front

 But network load for spanning tree was much higher
 In the last step, we may have reached roughly half the

nodes in the system
 So 50,000 messages were sent all at the same time!

CS5412 Spring 2015

17

Gossip vs “Urgent”?

 With gossip, we have a slow but steady story
 We know the speed and the cost, and both are low
 A constant, low-key, background cost
 And gossip is also very robust

 Urgent protocols (like our flooding protocol, or 2PC,

or reliable virtually synchronous multicast)
 Are way faster
 But produce load spikes
 And may be fragile, prone to broadcast storms, etc

CS5412 Spring 2015

18

Introducing hierarchy

 One issue with gossip is that the messages fill up
 With constant sized messages…
 … and constant rate of communication
 … we’ll inevitably reach the limit!

 Can we inroduce hierarchy into gossip systems?

CS5412 Spring 2015

19

Astrolabe
 Intended as help for

applications adrift in a
sea of information

 Structure emerges from
a randomized gossip
protocol

 This approach is robust
and scalable even under
stress that cripples
traditional systems

Developed at RNS, Cornell

 By Robbert van Renesse,
with many others
helping…

 Technology was
adopted at Amazon.com
(but they build their own
solutions rather than
using it in this form) CS5412 Spring 2015

20

Astrolabe is a flexible monitoring overlay

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2231 1.7 1 1 6.0

CS5412 Spring 2015

21

Astrolabe in a single domain

 Each node owns a single tuple, like the management
information base (MIB)

 Nodes discover one-another through a simple
broadcast scheme (“anyone out there?”) and gossip
about membership
 Nodes also keep replicas of one-another’s rows
 Periodically (uniformly at random) merge your state

with some else…

CS5412 Spring 2015

22

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu CS5412 Spring 2015

23

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

swift 2011 2.0

cardinal 2201 3.5

CS5412 Spring 2015

24

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2201 3.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu CS5412 Spring 2015

25

Observations

 Merge protocol has constant cost
 One message sent, received (on avg) per unit time.
 The data changes slowly, so no need to run it quickly –

we usually run it every five seconds or so
 Information spreads in O(log N) time

 But this assumes bounded region size
 In Astrolabe, we limit them to 50-100 rows

CS5412 Spring 2015

26

Big systems…

 A big system could have many regions

 Looks like a pile of spreadsheets
 A node only replicates data from its neighbors within its

own region

CS5412 Spring 2015

27

Scaling up… and up…

 With a stack of domains, we don’t want every
system to “see” every domain
 Cost would be huge

 So instead, we’ll see a summary

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

cardinal.cs.cornell.edu

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

CS5412 Spring 2015

28

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

Astrolabe builds a hierarchy using a P2P protocol that
“assembles the puzzle” without any servers

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing query
output is visible system-wide

Name Load Weblogic? SMTP? Word
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12

CS5412 Spring 2015

29

Large scale: “fake” regions

 These are
 Computed by queries that summarize a whole region as

a single row
 Gossiped in a read-only manner within a leaf region

 But who runs the gossip?
 Each region elects “k” members to run gossip at the

next level up.
 Can play with selection criteria and “k”

CS5412 Spring 2015

30

Hierarchy is virtual… data is replicated

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Yellow leaf node “sees” its neighbors and the
domains on the path to the root.

Falcon runs level 2 epidemic
because it has lowest load

Gnu runs level 2 epidemic because
it has lowest load

CS5412 Spring 2015

31

Hierarchy is virtual… data is replicated

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Green node sees different leaf domain but has
a consistent view of the inner domain

CS5412 Spring 2015

32

Worst case load?

 A small number of nodes end up participating in
O(logfanoutN) epidemics
 Here the fanout is something like 50
 In each epidemic, a message is sent and received

roughly every 5 seconds

 We limit message size so even during periods of
turbulence, no message can become huge.

CS5412 Spring 2015

33

Who uses Astrolabe?

 Amazon doesn’t use Astrolabe in this identical form,
but they built gossip-based monitoring systems
based on the same ideas.

 They deploy these in S3 and EC2: throughout their
big data centers!
 For them, Astrolabe-like mechanisms track overall state

of their system to diagnose performance issues
 They also automate reaction to temporary overloads

CS5412 Spring 2015

34

Example of overload handling

 Some service S is getting slow…
 Astrolabe triggers a “system wide warning”

 Everyone sees the picture
 “Oops, S is getting overloaded and slow!”
 So everyone tries to reduce their frequency of requests

against service S

 What about overload in Astrolabe itself?
 Could everyone do a fair share of inner aggregation?

CS5412 Spring 2015

35

Idea that one company had

CS5412 Spring 2015

36

 Start with Astrolabe approach

 But instead of electing nodes to play inner roles, just
assign them roles, left to right

 N-1 inner nodes, hence N-1 nodes play 2 aggre-
gation roles and one lucky node just has one role

 What impact will this have on Astrolabe?

CS5412 Spring 2015

37
World’s worst aggregation tree!

 A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L
∅

An event e occurs
at H

P learns O(N)
time units later!

G gossips with H
and learns e

CS5412 Spring 2015

38

What went wrong?

 In this horrendous tree, each node has equal “work
to do” but the information-space diameter is larger!

 Astrolabe benefits from “instant” knowledge
because the epidemic at each level is run by
someone elected from the level below

CS5412 Spring 2015

39

Insight: Two kinds of shape

 We’ve focused on the aggregation tree
 But in fact should also think about the information

flow tree

CS5412 Spring 2015

40

Information space perspective

 Bad aggregation graph: diameter O(n)

 Astrolabe version: diameter O(log(n))

H – G – E – F – B – A – C – D – L – K – I – J – N – M – O – P

A B C D E F G H I J K L M N O P

A C E G I K M O

A E I M

A I

A
 – B

C
 – D

E – F

G
 – H

 I –
 J

K
–

L

 M
 –

 N

O
 –

 P

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L
∅

Summary

 First we saw a way of using Gossip in a reliable
multicast (although the reliability is probabilistic)

 Then looked at using Gossip for aggregation
 Pure gossip isn’t ideal for this… and competes poorly

with flooding and other urgent protocols
 But Astrolabe introduces hierarchy and is an interesting

option that gets used in at least one real cloud platform
 Power: make a system more robust, self-adaptive,

with a technology that won’t make things worse
 But performance can still be sluggish

CS5412 Spring 2015

41

	CS5412: �Bimodal Multicast�Astrolabe
	Gossip 201
	Gossip in distributed systems
	Bimodal Multicast
	What’s the cost of an IP multicast?
	Making Bimodal Multicast reliable
	Making Bimodal Multicast reliable
	Making Bimodal Multicast reliable
	Optimizations
	lpbcast variation
	Speculation... about speed
	A thought question
	… and the answer is
	Yet with flooding… easy!
	This is a “spanning tree”
	Not all logs are identical!
	Insight?
	Gossip vs “Urgent”?
	Introducing hierarchy
	Slide Number 20
	Astrolabe is a flexible monitoring overlay
	Astrolabe in a single domain
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	Observations
	Big systems…
	Scaling up… and up…
	Astrolabe builds a hierarchy using a P2P protocol that “assembles the puzzle” without any servers
	Large scale: “fake” regions
	Hierarchy is virtual… data is replicated
	Hierarchy is virtual… data is replicated
	Worst case load?
	Who uses Astrolabe?
	Example of overload handling
	Idea that one company had
	World’s worst aggregation tree!
	What went wrong?
	Insight: Two kinds of shape
	Information space perspective
	Summary

