
CS5412:
VIRTUAL SYNCHRONY
Ken Birman

1CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture XIV

Group Communication idea

 System supports a new abstraction (like an object)
 A “group” consisting of a set of processes (“members”) that

join, leave and cooperate to replicate data or do parallel
processing tasks

 A group has a name (like a filename)
 … and a state (the data that its members are maintaining)
 The state will often be replicated so each member has a copy
 Note that this is in contrast to Paxos where each member has a

partial copy and we need to use a “learner algorithm” to extract
the actual current state

 Think of state much as you think of the value of a variable, except
that a group could track many variables at once

CS5412 Spring 2015 (Cloud Computing: Birman)

2

Group communication Idea

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 The members can send each other
 Point-to-point messages
 Multicasts that go from someone to all the members

 They can also do RPC style queries
 Query a single member
 Query the whole group, with all of them replying

 Example: The Isis2 system (but there are many such
systems)

Animation: A process joins a group

CS5412 Spring 2015 (Cloud Computing: Birman)

4

 At first, P is just a normal program, with purely local
private variables

 P still has its own private variables, but now it is able to
keep them aligned with track the versions at Q, R and S

P Q R

S

S starts by creating an endpoint object, attaching upcall
handlers to (later) react to events like membership

changes and multicasts reporting updates
Once the group endpoint is properly configured, S

issues a “join” request. Isis2 checks to see if the group
already exists. If not, p can create a new instance, but

in this case, the group is already active.

P Q R SInitial state

P’s endpoint

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 Just an object that is P’s “portal” for operations
involving the group

 The endpoint lets P see events occurring in the group
such as members joining, failing (detected slowly via
timeout) or leaving (very fast notification), multicasts
reporting updates or other events, queries, etc

 But no data is automatically replicated. P provides logic
to maintain the data it associates with the group.

Isis2 is a library for group communication

 Formal model permits us to
achieve correctness

 Isis2 is too complex to use
formal methods as a
development tool, but does
facilitate debugging (model
checking)

 Think of Isis2 as a collection
of modules, each with
rigorously stated properties

 Isis2 implementation needs
to be fast, lean, easy to use

 Developer must see it as
easier to use Isis2 than to
build from scratch

 Seek great performance
under “cloudy conditions”

 Forced to anticipate many
styles of use

It Uses a Formal model It Reflects Sound Engineering

CS5412 Spring 2015 (Cloud Computing: Birman)

6

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how
strong ordering needs to be.

7

CS5412 Spring 2015 (Cloud Computing: Birman)

Isis2 makes developer’s life easier

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how
strong ordering needs to be.

8

CS5412 Spring 2015 (Cloud Computing: Birman)

Group g = new Group(“myGroup”);

Dictionary <string,double> Values = new Dictionary<string,double>();

g.ViewHandlers += delegate(View v) {
Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);

};

g.Join();

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Isis2 makes developer’s life easier

 First sets up group

 Join makes this a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how
strong ordering needs to be.

9

CS5412 Spring 2015 (Cloud Computing: Birman)

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {
g.Reply(Values[s]);

};
g.Join();

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Isis2 makes developer’s life easier

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how strong
ordering needs to be.

10

CS5412 Spring 2015 (Cloud Computing: Birman)

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);

};

g.Join();

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();

nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Isis2 makes developer’s life easier

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how strong
ordering needs to be.

11

CS5412 Spring 2015 (Cloud Computing: Birman)

Isis2 makes developer’s life easier

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how strong
ordering needs to be.

12

CS5412 Spring 2015 (Cloud Computing: Birman)

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();
g.SetSecure(key);

g.OrderedSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Isis2 makes developer’s life easier

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make. User can tell Isis2 how
strong ordering needs to be.

13

CS5412 Spring 2015 (Cloud Computing: Birman)

Group g = new Group(“myGroup”);
Dictionary <string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();
g.SetSecure(key);
g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

Concept: Query as a “multi-RPC”

 One member asks multiple
group members to perform
some action

 It could be doing this on behalf
of an external client, and it
might participate too

 Often group members
subdivide the task (but there
could be a fault-tolerance
benefit to asking 2 or more to
do the same work)

14

CS5412 Spring 2015 (Cloud Computing: Birman)

p q r s

It takes a “community”

 A lot of complexity lurks behind those simple APIs
 Building one of your own would be hard
 Isis2 took Ken >3 years to implement & debug

Isis2 user
object

Isis2 user
object

Isis2 user
object

Isis2 library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer RDMA transfersDr. Multicast Security

Reliable Sending Fragmentation Security

Sense Runtime Environment
Self-stabilizing

Bootstrap ProtocolSocket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

15

What goes on down there?

 Terminology: group create, view, join with state transfer, multicast, client-
to-group communication

 This is the “dynamic” membership model: processes come & go

p

q

r

s

t

u

CS5412 Spring 2015 (Cloud Computing: Birman)

16

Clients of a group

CS5412 Spring 2015 (Cloud Computing: Birman)

17

 Applications linked to Isis2 can access a group by joining
it as a member, but can also issue requests as a “client”
in RPC style

 One can also build a group that uses a web service
standard (SOAP, WCF, REST) to accept requests from
web clients that don’t use Isis2 at all. Many cloud
services can automatically load balance such requests
over the set of group members.

 The representative acts as a “proxy” for the client and
can issue multicasts or queries on its behalf

Concepts

CS5412 Spring 2015 (Cloud Computing: Birman)

18

 You build your program and link with Isis2

 It starts the library (the new guy tracks down any
active existing members)

 Then you can create and join groups, receive a
“state transfer” to catch up, cooperate with others

 All kinds of events are reported via upcalls
 New view: View object tells members what happened
 Incoming message: data fields extracted and passed as

values to your handler method

Recipe for a group communication system

 Bake one pie shell
 Build a service that can track group membership and report

“view changes”
 Prepare 2 cups of basic pie filling

 Develop a simple fault-tolerant multicast protocol
 Add flavoring of your choice

 Extend the multicast protocol to provide desired delivery
ordering guarantees

 Fill pie shell, chill, and serve
 Design an end-user “API” or “toolkit”. Clients will “serve

themselves”, with various goals…

CS5412 Spring 2015 (Cloud Computing: Birman)

19

Role of GMS

 We’ll add a new system service to our distributed
system, like the Internet DNS but with a new role
 Its job is to track membership of groups
 To join a group a process will ask the GMS
 The GMS will also monitor members and can use this to

drop them from a group
 And it will report membership changes

CS5412 Spring 2015 (Cloud Computing: Birman)

20

Group picture… with GMS

p

q

r

s

t

u

GMS

P requests: I wish to
join or create group

“X”.

GMS responds: Group X
created with you as the

only member

T to GMS: What is
current membership for

group X?

r joins…

GMS notices that q has
failed (or q decides to

leave)
Q joins, now X = {p,q}. Since p is
the oldest prior member, it does a

state transfer to q

CS5412 Spring 2015 (Cloud Computing: Birman)

21

GMS to T: X = {p}

Group membership service

 Runs on some sensible place, like the first few
machines that start up when you launch Isis2

 Takes as input:
 Process “join” events
 Process “leave” events
 Apparent failures

 Output:
 Membership views for group(s) to which those processes

belong
 Seen by the protocol “library” that the group members are

using for communication support

CS5412 Spring 2015 (Cloud Computing: Birman)

22

Issues?

 The service itself needs to be fault-tolerant
 Otherwise our entire system could be crippled by a

single failure!

 So we’ll run two or three copies of it
 Hence Group Membership Service (GMS) must run

some form of protocol (GMP)

CS5412 Spring 2015 (Cloud Computing: Birman)

23

Group picture… with GMS

p

q

r

s

t

GMS

CS5412 Spring 2015 (Cloud Computing: Birman)

24

Group picture… with GMS

p

q

r

s

t

GMS0
GMS1
GMS2

Let’s start by focusing on how GMS tracks its own
membership. Since it can’t just ask the GMS to do this
it needs to have a special protocol for this purpose.

But only the GMS runs this special protocol, since other
processes just rely on the GMS to do this job

In fact it will end up using those reliable multicast
protocols to replicate membership information for

other groups that rely on it

The GMS is a group too. We’ll build it first and then
will use it when building reliable multicast protocols.

25

Approach

 Assume that GMS has members {p,q,r} at time t
 Designate the “oldest” of these as the protocol

“leader”
 To initiate a change in GMS membership, leader will

run the GMS
 Others can’t run the GMS; they report events to the

leader

CS5412 Spring 2015 (Cloud Computing: Birman)

26

GMS example

 Example:
 Initially, GMS consists of {p,q,r}
 Then q is believed to have crashed

p

q

r

CS5412 Spring 2015 (Cloud Computing: Birman)

27

The GMS group

Failure detection: may make mistakes

 Recall that failures are hard to distinguish from
network delay
 So we accept risk of mistake
 If p is running a protocol to exclude q because “q has

failed”, all processes that hear from p will cut channels
to q
 Avoids “messages from the dead”

 q must rejoin to participate in GMS again

CS5412 Spring 2015 (Cloud Computing: Birman)

28

Basic GMS

 Someone reports that “q has failed”
 Leader (process p) runs a 2-phase commit protocol

 Announces a “proposed new GMS view”
 Excludes q, or might add some members who are joining, or

could do both at once
 Waits until a majority of members of current view have

voted “ok”
 Then commits the change

CS5412 Spring 2015 (Cloud Computing: Birman)

29

GMS example

 Proposes new view: {p,r} [-q]: “p and r; q has left”
 Needs majority consent: p itself, plus one more

(“current” view had 3 members)
 Can add members at the same time

p

q

r

Proposed V1 = {p,r}

V0 = {p,q,r}
OK

Commit V1

V1 = {p,r}

CS5412 Spring 2015 (Cloud Computing: Birman)

30

The GMS group

Special concerns?

 What if someone doesn’t respond?
 P can tolerate failures of a minority of members of the

current view
 New first-round “overlaps” its commit:

 “Commit that q has left. Propose add s and drop r”

 P must wait if it can’t contact a majority
 Avoids risk of partitioning

CS5412 Spring 2015 (Cloud Computing: Birman)

31

What if leader fails?

 Here we do a 3-phase protocol
 New leader identifies itself based on age ranking (oldest

surviving process)
 It runs an inquiry phase
 “The adored leader has died. Did he say anything to you before

passing away?”
 Note that this causes participants to cut connections to the adored

previous leader

 Then run normal 2-phase protocol but “terminate” any
interrupted view changes leader had initiated

CS5412 Spring 2015 (Cloud Computing: Birman)

32

GMS example

 New leader first sends an inquiry
 Then proposes new view: {q,r} [-p]
 Needs majority consent: q itself, plus one more (“current”

view had 3 members)
 Again, can add members at the same time

p

q

r

Proposed V1 = {q,r}[-p]

V0 = {p,q,r}
OK

Commit V1

V1 = {q,r}[-p]

Inquire [-p]

OK: nothing was pending

CS5412 Spring 2015 (Cloud Computing: Birman)

33

The GMS group

Properties of GMS

 We end up with a single service shared by the entire
system
 In fact every process can participate
 But more often we just designate a few processes and

they run the GMS

 Typically the GMS runs the GMP and also uses
replicated data to track membership of other groups

CS5412 Spring 2015 (Cloud Computing: Birman)

34

Use of GMS

 A process t, not in the GMS, wants to join group
“Upson309_status”
 It sends a request to the GMS
 GMS updates the “membership of group

Upson309_status” to add t
 Reports the new view to the current members of the

group, and to t
 Begins to monitor t’s health

CS5412 Spring 2015 (Cloud Computing: Birman)

35

Processes t and u “using” a GMS

 The GMS contains p, q, r (and later, s)
 Processes t and u want to form some other group, but use the

GMS to manage membership on their behalf

p

q

r

s

t

u

CS5412 Spring 2015 (Cloud Computing: Birman)

36

The GMS group

Relate to Paxos

CS5412 Spring 2015 (Cloud Computing: Birman)

37

 In fact we’re doing something very similar to Paxos
 The “slot number” is the “view number”
 And the “ballot” is the current proposal for what the

next view should be
 With Paxos proposers can actually talk about multiple

future slots/commands (concurrency parameter α)
 With GMS, we do that too!
 A single proposal can actually propose multiple changes
 First [add X], then [drop Y and Z], then [add A, B and C]…
 In order… eventually 2PC succeeds and they all commit

How does this differ from Paxos?

CS5412 Spring 2015 (Cloud Computing: Birman)

38

 Details are clearly not identical, and GMS state isn’t durable

 Runs with a well-defined leader; Paxos didn’t need one (in
Paxos we often prefer to have a single leader but correctness
is ensured with multiple coordinators)

 Very similar guarantees of ordering and if we added
logging, durability too. (Isis2 SafeSend adds this logging)

 Isis GMS protocol predates Paxos. It “bisimulates” Paxos,
meaning that each can simulate the other.

We have our pie shell

 Now we’ve got a group membership service that
reports identical views to all members, tracks health

 Can we build a reliable multicast?

CS5412 Spring 2015 (Cloud Computing: Birman)

39

Unreliable multicast

 Suppose that to send a multicast, a process just uses
an unreliable protocol
 Perhaps IP multicast
 Perhaps UDP point-to-point
 Perhaps TCP

 … some messages might get dropped. If so it
eventually finds out and resends them (various
options for how to do it)

CS5412 Spring 2015 (Cloud Computing: Birman)

40

Concerns if sender crashes

 Perhaps it sent some message and only one process
has seen it

 We would prefer to ensure that
 All receivers, in “current view”
 Receive any messages that any receiver receives (unless

the sender and all receivers crash, erasing evidence…)

CS5412 Spring 2015 (Cloud Computing: Birman)

41

An interrupted multicast

 A message from q to r was “dropped”
 Since q has crashed, it won’t be resent

p

q

r

s

CS5412 Spring 2015 (Cloud Computing: Birman)

42

Terminating an interrupted multicast

 We say that a message is unstable if some receiver
has it but (perhaps) others don’t
 For example, q’s message is unstable at process r

 If q fails we want to terminate unstable messages
 Finish delivering them (without duplicate deliveries)
 Masks the fact that the multicast wasn’t reliable and

that the leader crashed before finishing up

CS5412 Spring 2015 (Cloud Computing: Birman)

43

How to do this?

 Easy solution: all-to-all echo
 When a new view is reported
 All processes echo any unstable messages on all channels on

which they haven’t received a copy of those messages

 A flurry of O(n2) messages

 Note: must do this for all messages, not just those from
the failed process. This is because more failures could
happen in future

CS5412 Spring 2015 (Cloud Computing: Birman)

44

An interrupted multicast

 p had an unstable message, so it echoed it when it
saw the new view

p

q

r

s

CS5412 Spring 2015 (Cloud Computing: Birman)

45

First an “internal”
view shows up,
triggers a flushFlush protocol finishes
the multicast. Now it

looks reliable

Then “redeliver” the
new view, this time

visible to the
application layer

Event ordering

 We should first deliver the multicasts to the
application layer and then report the new view

 This way all replicas see the same messages
delivered “in” the same view
 Some call this “view synchrony”

CS5412 Spring 2015 (Cloud Computing: Birman)

46

State transfer

 At the instant the new view is reported, a process
already in the group makes a checkpoint

 Sends point-to-point to new member(s)
 It (they) initialize from the checkpoint

CS5412 Spring 2015 (Cloud Computing: Birman)

47

State transfer and reliable multicast

 After re-ordering, it looks like each multicast is reliably
delivered in the same view at each receiver

 Note: if sender and all receivers fails, unstable message can be
“erased” even after delivery to an application
 This is a price we pay to gain higher speed

p

q

r

s

CS5412 Spring 2015 (Cloud Computing: Birman)

48

What about ordering?

 It is trivial to make our protocol FIFO wrt other
messages from same sender
 If we just number messages from each sender, they will

“stay” in order

 Concurrent messages are unordered
 If sent by different senders, messages can be delivered in

different orders at different receivers

 This is the protocol called “Send”

CS5412 Spring 2015 (Cloud Computing: Birman)

49

When is Send used?

CS5412 Spring 2015 (Cloud Computing: Birman)

50

 The protocol is very fast
 Useful if ordering really doesn’t matter
 Or if all the updates to some object are sent by the

same process. In this case FIFO is what we need

 Send is not the right choice if multiple members
send concurrent, conflicting updates
 In that case use g.OrderedSend()

Other options?

CS5412 Spring 2015 (Cloud Computing: Birman)

51

 OrderedSend: used if there might be concurrent
sends

 SafeSend: Most conservative but also quite costly.
A version of Paxos (topic of next lecture)

What does this give us?

 A second way to implement state machine
replication in which each member has a complete
and correct state
 Notice contrast with Paxos where to learn the state you

need to run a decision process that reads QR copies
 Isis2 replica is just a local object and you use it like any

other object (with locking to prevent concurrent update)
 Paxos has replicated state but you need to read

multiple process states to figure out the value
 This makes Isis2 faster and cheaper

CS5412 Spring 2015 (Cloud Computing: Birman)

52

Isis2 versus Paxos

CS5412 Spring 2015 (Cloud Computing: Birman)

53

 Isis2 offers control over message ordering and
durability. Paxos has just one option.

 By default, Isis2 is a multicast layer that just delivers
messages and doesn’t log them

 But you can log group states in various ways,
including exactly what Paxos does.

How can Isis2 offer Paxos?

CS5412 Spring 2015 (Cloud Computing: Birman)

54

 Via the SafeSend API mentioned last time
 SafeSend is a genuine Paxos implementation
 But it does have some optimizations
 And it has an unlogged mode. For Paxos durability you

need to enable the logged feature.

 In normal Paxos we don’t have a GMS
 With a GMS the protocol simplifies slightly and we can

relax the quorum rules
 SafeSend includes these performance enhancements but

they don’t impact the correctness or properties of sol’n

Consistency model: Virtual synchrony meets
Paxos (and they live happily ever after…)

 Virtual synchrony is a “consistency” model:
 Synchronous runs: indistinguishable from non-replicated object

that saw the same updates (like Paxos)
 Virtually synchronous runs are indistinguishable from

synchronous runs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

55

Is Isis2 hard to use? Paxos was hard…

CS5412 Spring 2015 (Cloud Computing: Birman)

56

 We mentioned that just sticking Paxos in front of a set
of file or database replicas is tempting, but a mistake
 The protocol might “decide” something but this doesn’t mean

the database has the updates
 Surprisingly tricky to ensure that we apply them all

 Isis2: apply update when multicast delivered
 This is safe and correct: all replicas do same thing
 But it does require a state transfer to add members: we

need to make a new DB copy for each new member
 Can we do better?

Durability options

CS5412 Spring 2015 (Cloud Computing: Birman)

57

 Normal configuration of Isis2 is optimized for “in-
memory” applications.
 State transfer: make a checkpoint, load it into a joining

process, to initialize a joining group member
 Checkpoint/reload can be used to make an entire

group remember its state across shutdowns

 SafeSend, the Isis2 version of Paxos, can be asked
to log messages. This gives a stronger durability
guarantee than with checkpoint/restart.

State transfer worry

CS5412 Spring 2015 (Cloud Computing: Birman)

58

 If my database is just a few Mbytes… just send it

 But in the cloud we often see databases with tens of
Gbytes of content!

 Copying them will be a very costly undertaking

Out-of-Band (OOB) technology

CS5412 Spring 2015 (Cloud Computing: Birman)

59

 Allows copying big state by replication of memory-
mapped files, very efficient

 There is a clever way to integrate OOB transfers
with state transfer

 Effect is that with a bit more effort, Isis2 won’t need
to send big objects through its multicast layer

Isis2 DHT

CS5412 Spring 2015 (Cloud Computing: Birman)

60

 The system also has a fancy key-value store
 Runs in a group and shards the data
 One-hop get and put: no indirect routing needed!
 Can even put or get multiple key-value pairs at a time,

and there is a way to request totally ordered, consistent
get and put: gives a form of atomicity

 Then you can do “aggregated query” operations to
leverage the resulting parallel computing opportunity

GridCloud: Example Isis2 application

CS5412 Spring 2015 (Cloud Computing: Birman)

61

Summary

CS5412 Spring 2015 (Cloud Computing: Birman)

62

 Group communication offers a nice way to replicate
an application
 Replicated data (without the cost of quorums)
 Coordinated and replicated processing of requests
 Automatic leader election, member ranking
 Automated failure handling, help getting external

database caught up after a crash
 Tools for security and other aspects that can be pretty

hard to implement by hand

	CS5412: �Virtual Synchrony
	Group Communication idea
	Group communication Idea
	Animation: A process joins a group
	P’s endpoint
	Isis2 is a library for group communication
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Concept: Query as a “multi-RPC”
	It takes a “community”
	What goes on down there?
	Clients of a group
	Concepts
	Recipe for a group communication system
	Role of GMS
	Group picture… with GMS
	Group membership service
	Issues?
	Group picture… with GMS
	Group picture… with GMS
	Approach
	GMS example
	Failure detection: may make mistakes
	Basic GMS
	GMS example
	Special concerns?
	What if leader fails?
	GMS example
	Properties of GMS
	Use of GMS
	Processes t and u “using” a GMS
	Relate to Paxos
	How does this differ from Paxos?
	We have our pie shell
	Unreliable multicast
	Concerns if sender crashes
	An interrupted multicast
	Terminating an interrupted multicast
	How to do this?
	An interrupted multicast
	Event ordering
	State transfer
	State transfer and reliable multicast
	What about ordering?
	When is Send used?
	Other options?
	What does this give us?
	Isis2 versus Paxos
	How can Isis2 offer Paxos?
	Consistency model: Virtual synchrony meets Paxos (and they live happily ever after…)
	Is Isis2 hard to use? Paxos was hard…
	Durability options
	State transfer worry
	Out-of-Band (OOB) technology
	Isis2 DHT
	GridCloud: Example Isis2 application
	Summary

