
CS5412:

TWO AND THREE PHASE

COMMIT

Ken Birman

1 CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture XI

Continuing our consistency saga

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 Recall from last lecture:

 Cloud-scale performance centers on replication

 Consistency of replication depends on our ability to
talk about notions of time.

 Lets us use terminology like “If B accesses service S after A
does, then B receives a response that is at least as current as
the state on which A’s response was based.”

 Lamport: Don’t use clocks, use logical clocks

 We looked at two forms, logical clocks and vector clocks

 We also explored notion of an “instant in time” and
related it to something called a consistent cut

Next steps?

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 We’ll create a second kind of building block

 Two-phase commit

 It’s cousin, three-phase commit

 These commit protocols (or a similar pattern) arise

often in distributed systems that replicate data

 Closely tied to “consensus” or “agreement” on

events, and event order, and hence replication

The Two-Phase Commit Problem

CS5412 Spring 2015 (Cloud Computing: Birman)

4

 The problem first was encountered in database

systems

 Suppose a database system is updating some

complicated data structures that include parts

residing on more than one machine

 So as they execute a “transaction” is built up in

which participants join as they are contacted

... so what’s the “problem”?

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 Suppose that the transaction is interrupted by a crash

before it finishes

 Perhaps, it was initiated by a leader process L

 By now, we’ve done some work at P and Q, but a crash

causes P to reboot and “forget” the work L had started

 Implicitly assumes that P might be keeping the pending work in

memory rather than in a safe place like on disk

 But this is actually very common, to speed things up

 Forced writes to a disk are very slow compared to in-memory

logging of information, and “persistent” RAM memory is costly

 How can Q learn that it needs to back out?

The basic idea

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 We make a rule that P and Q (and other

participants) treat pending work as transient

 You can safely crash and restart and discard it

 If such a sequence occurs, we call it a “forced abort”

 Transactional systems often treat commit and abort

as a special kind of keyword

A transaction

CS5412 Spring 2015 (Cloud Computing: Birman)

7

 L executes:

Begin

{

 Read some stuff, get some locks

 Do some updates at P, Q, R...

}

Commit

 If something goes wrong, executes “Abort”

Transaction...

CS5412 Spring 2015 (Cloud Computing: Birman)

8

 Begins, has some kind of system-assigned id

 Acquires pending state

 Updates it did at various places it visited

 Read and Update or Write locks it acquired

 If something goes horribly wrong, can Abort

 Otherwise if all went well, can request a Commit

 But commit can fail. This is where the 2PC and 3PC

algorithms are used

The Two-Phase Commit (2PC) problem

CS5412 Spring 2015 (Cloud Computing: Birman)

9

 Leader L has a set of places { P, Q, ... } it visited

 Each place may have some pending state for this xtn

 Takes form of pending updates or locks held

 L asks “Can you still commit” and P, Q ... must reply

 “No” if something has caused them to discard the state

of this transaction (lost updates, broken locks)

 Usually occurs if a member crashes and then restarts

 No reply treated as “No” (handles failed members)

What about “Yes”?

CS5412 Spring 2015 (Cloud Computing: Birman)

10

 If a member replies “Yes” it moves to a state we call
prepared to commit

 Up to then it could just abort in a unilateral way, i.e. if data
or locks were lost due to a crash/restart (or a timeout)

 But once it says “I’m prepared to commit” it must not lose
locks or data. So it will probably need to force data to
disk at this stage

 Many systems push data to disk in background so all they
need to do is update a single bit on disk: “prepared=true”
but this disk-write is still considered costly event!

 Then can reply “Yes”

Role of leader

CS5412 Spring 2015 (Cloud Computing: Birman)

11

 So.... L sends out “Are you prepared?”

 It waits and eventually has replies from {P, Q, ... }

 “No” if someone replies no, or if a timeout occurs

 “Yes” only if that participant actually replied “yes”and

hence is now in the prepared to commit state

 If all participants are prepared to commit, L can

send a “Commit” message. Else L must send “Abort”

 Notice that L could mistakenly abort. This is ok.

Participant receives a commit/abort

CS5412 Spring 2015 (Cloud Computing: Birman)

12

 If participant is prepared to commit it waits for

outcome to be known

 Learns that leader decided to Commit: It “finalizes” the

state by making updates permanent

 Learns that leader decided to Abort: It discards any

updates

 Then can release locks

Failure cases to consider

CS5412 Spring 2015 (Cloud Computing: Birman)

13

 Two possible worries

 Some participant might fail at some step of the protocol

 The leader might fail at some step of the protocol

 Notice how a participant moves from “participating”

to “prepared to commit” to “commited/aborted”

 Leader moves from “doing work” to “inquiry” to

“commited/aborted”

Can think about cross-product of states

CS5412 Spring 2015 (Cloud Computing: Birman)

14

 This is common in distributed protocols

 We need to look at each member, and each state it

can be in

 The system state is a vector (SL, SP, SQ, ...)

 Since each can be in 4 states there are 4N possible

scenarios we need to think about!

 Many protocols are actually written in a state-

diagram form, but we’ll use English today

How the leader handles failures

CS5412 Spring 2015 (Cloud Computing: Birman)

15

 Suppose L stays healthy and only participants fail

 If a participant failed before voting, leader just aborts the
protocol

 The participant might later recover and needs a way to find
out what happened

 If failure causes it to forget the txn, no problem

 For cases where a participant may know about the txn and want to
learn the outcome, we just keep a long log of outcomes and it can
look this txn up by its ID to find out

 Writing to this log is a role of the leader (and slows it down)

What about a failure after vote?

CS5412 Spring 2015 (Cloud Computing: Birman)

16

 The leader also needs to handle a participant that
votes “Yes” and hence is prepared, but then fails

 In this case it won’t receive the Commit/Abort message

 Solved because the leader logs the outcome

 On recovery that participant notices that it has a prepared
txn and consults the log

 Must find the outcome there and must wait if it can’t find the
outcome information

 Implication: Leader must log the outcome before sending
the Commit or Abort outcome message!

Now can think about participants

CS5412 Spring 2015 (Cloud Computing: Birman)

17

 If a participant was involved but never was asked

to vote, it can always unilaterally abort

 But once a participant votes “Yes” it must learn the

outcome and can’t terminate the txn until it does

 E.g. must hold any pending updates, and locks

 Can’t release them without knowing outcome

 It obtains this from L, or from the outcomes log

The bad case

CS5412 Spring 2015 (Cloud Computing: Birman)

18

 Some participant, maybe P, votes “Yes” but then leader
L seems to vanish

 Maybe it died... maybe became disconnected from the
system (partitioning failure)

 P is “stuck”. We say that it is “blocked”

 Can P deduce the state?

 If log reports outcome, P can make progress

 What if the log doesn’t know the outcome? As long as we
follow rule that L logs outcome before telling anyone, safe
to commit in this case

So 2PC makes progress with a log

CS5412 Spring 2015 (Cloud Computing: Birman)

19

 But this assumes we can access either the leader L,

or the log.

 If neither is accessible, we’re stuck

 In any real system that uses 2PC a log is employed

but in many textbooks, 2PC is discussed without a

log service. What do we do in this case?

2PC but no log (or can’t reach it)

CS5412 Spring 2015 (Cloud Computing: Birman)

20

 If P was told the list of participants when L

contacted it for the vote, P could poll them

 E.g. P asks Q, R, S... “what state are you in?”

 Suppose someone says “pending” or even “abort”,

or someone knows outcome was “commit”?

 Now P can just abort or commit!

 But what if N-1 say “pending” and 1 is inaccessible?

P remains blocked in this case

CS5412 Spring 2015 (Cloud Computing: Birman)

21

 L plus one member, perhaps S, might know outcome

 P is unable to determine what L could have done

 Worse possible situation: L is both leader and also

participant and hence a single failure leaves the

other participants blocked!

Skeen & Stonebraker: 3PC

CS5412 Spring 2015 (Cloud Computing: Birman)

22

 Skeen proposed a 3PC protocol, that adds one step
(and omits any log service)

 With 3PC the leader runs 2 rounds:

 “Are you able to commit”? Participants reply “Yes/No”

 “Abort” or “Prepare to commit”. They reply “OK”

 “Commit”

 Notice that Abort happens in round 2 but Commit
only can happen in round 3

State space gets even larger!

CS5412 Spring 2015 (Cloud Computing: Birman)

23

 Now we need to think of 5N states

 But Skeen points out that many can’t occur

 For example we can’t see a mix of processes that are in

the Commit and Abort state

 We could see some in “Running” and some in “Yes”

 We could see some in “Yes” and some in “Prepared”

 We could see some in “Prepared” and some in “Commit”

 But by pushing “Commit” and “Abort” into different

rounds we reduce uncertainly

3PC recovery is complex

CS5412 Spring 2015 (Cloud Computing: Birman)

24

 Skeen shows how, on recovery, we can poll the system
state

 Any (or all) processes can do this

 Can always deduce a safe outcome... provided that we
have an accurate failure detector

 Concludes that 3PC, without any log service, and with
accurate failure detection is non-blocking

Failure detection in a network

CS5412 Spring 2015 (Cloud Computing: Birman)

25

 Many think of Skeen’s 3PC as a practical protocol

 But to really use 3PC we would need a perfect

failure detection service that never makes mistakes

 It always says “P has failed” if, in fact, P has failed

 And it never says “P has failed” if P is actually up

 Is it possible to build such a failure service?

Notions of failure

CS5412 Spring 2015 (Cloud Computing: Birman)

26

 This leads us to think about failure “models”

 Many things can fail in a distributed system

 Network can drop packets, or the O/S can do so

 Links can break causing a network partition that isolates one or
more nodes

 Processes can fail by halting suddenly

 A clock could malfunction, causing timers to fire incorrectly

 A machine could freeze up for a while, then resume

 Processes can corrupt their memory and behave badly without
actually crashing

 A process could be taken over by a virus and might behave in a
malicious way that deliberately disrupts our system

Worst: Byzantine

Best: “Fail-stop” with trusted notifications

“Real” systems?

CS5412 Spring 2015 (Cloud Computing: Birman)

27

 Linux and Windows use timers for failure detection

 These can fire even if the remote side is healthy

 So we get “inaccurate” failure detections

 Of course many kinds of crashes can be sensed

accurately so for those, we get trusted notifications

 Some applications depend on TCP, but TCP itself

uses timers and so has the same problem

Byzantine case

CS5412 Spring 2015 (Cloud Computing: Birman)

28

 Much debate around this

 Since programs are buggy (always), it can be

appealing to just use a Byzantine model. A bug

gives random corrupt behavior... like a mild attack

 But Byzantine model is hard to work with and can

be costly (you often must “outvote” the bad process)

Failure detection in a network

CS5412 Spring 2015 (Cloud Computing: Birman)

29

 Return to our use case

 2PC and 3PC are normally used in standard Linux
or Windows systems with timers to detect failure

 Hence we get inaccurate failure sensing with possible
mistakes (e.g. P thinks L is faulty but L is fine)

 3PC is also blocking in this case, although less likely to
block than 2PC

 Can prove that any commit protocol would have
blocking states with inaccurate failure detection

World-Wide Failure Sensing

CS5412 Spring 2015 (Cloud Computing: Birman)

30

 Vogels wrote a paper in which he argued that we

really could do much better

 In a cloud computing setting, the cloud management

system often “forces” slow nodes to crash and restart

 Used as a kind of all-around fixer-upper

 Also helpful for elasticity and automated management

 So in the cloud, management layer is a fairly

trustworthy partner, if we were to make use of it

 We don’t make use of it, however, today

The Postman Always Rings Twice

CS5412 Spring 2015 (Cloud Computing: Birman)

31

 Suppose the mailman wants to see you…

 He rings and waits a few seconds

 Nobody comes to the door... should he

assume you’ve died?

 Hopefully not

 Vogels suggests that there are many reasons a

machine might timeout and yet not be faulty

Causes of delay in the cloud

CS5412 Spring 2015 (Cloud Computing: Birman)

32

 Scheduling can be sluggish

 A node might get a burst of messages that overflow its
input sockets and triggers message loss, or network
could have some kind of malfunction in its routers/links

 A machine might become overloaded and slow because
too many virtual machines were mapped on it

 An application might run wild and page heavily

Vogels suggests?

CS5412 Spring 2015 (Cloud Computing: Birman)

33

 He recommended that we add some kind of failure

monitoring service as a standard network component

 Instead of relying on timeout, even protocols like remote

procedure call (RPC) and TCP would ask the service

and it would tell them

 It could do a bit of sleuthing first... e.g. ask the O/S on

that machine for information... check the network...

Why clouds don’t do this

CS5412 Spring 2015 (Cloud Computing: Birman)

34

 Hamilton: In the cloud our focus tends to be on keeping
the “majority” of the system running

 No matter what the excuse it might have, if some node is
slow it makes more sense to move on

 Keeping the cloud up, as a whole, is way more valuable
than waiting for some slow node to catch up

 End-user experience is what counts!

 So the cloud is casual about killing things

 ... and avoids services like “failure sensing” since they
could become bottlenecks

Also, most software is buggy!

CS5412 Spring 2015 (Cloud Computing: Birman)

35

 A mix of “Bohrbugs” and “Heisenbugs”

 Bohrbugs: Boring and easy to fix. Like Bohr model of
the atom

 Heisenbugs: They seem to hide when you try to pin them
down (caused by concurrency and problems that
corrupt a data structure that won’t be visited for a
while). Hard to fix because crash seems unrelated to
bug

 Studies show that pretty much all programs retain
bugs over their full lifetime.

 So if something is acting strange, it may be failing!

Worst of all... timing is flakey

CS5412 Spring 2015 (Cloud Computing: Birman)

36

 At cloud scale, with millions of nodes, we can trust

timers at all

 Too many things can cause problems that manifest

as timing faults or timeouts

 Again, there are some famous models... and again,

none is ideal for describing real clouds

Synchronous and Asynchronous

Executions

p q r p q r

…processes share a

synchronized clock

In the synchronous model

messages arrive on time

… and failures are easily

detected

None of these properties

holds in an asynchronous

model

CS5412 Spring 2015 (Cloud Computing: Birman)

37

Reality: neither one

 Real distributed systems aren’t synchronous

 Although a flight control computer can come close

 Nor are they asynchronous

 Software often treats them as asynchronous

 In reality, clocks work well… so in practice we often use time cautiously
and can even put limits on message delays

 For our purposes we usually start with an asynchronous model

 Subsequently enrich it with sources of time when useful.

 We sometimes assume a “public key” system. This lets us sign or encrypt
data where need arises

CS5412 Spring 2015 (Cloud Computing: Birman)

38

Thought problem

 Ron and Hermione will meet for lunch. They’ll eat in
the cafeteria unless both are sure that the weather is
good

 Hermione’s cubicle is in the crypt, so Ron will send email

 Both have lots of meetings, and might not read email. So
she’ll acknowledge his message.

 They’ll meet inside if one or the other is away from their
desk and misses the email.

 Ron sees sun. Sends email. Hermione acks’s. Can
they meet outside?

CS5412 Spring 2015 (Cloud Computing: Birman)

39

Ron and Hermione

Ron Hermione

R: Hermione, the weather is
beautiful! Let’s meet at the
sandwich stand outside.

H: I can hardly wait. I’ve been
in this dungeon studying and
haven’t seen the sun in weeks!

CS5412 Spring 2015 (Cloud Computing: Birman)

40

They eat inside! Ron reasons:

 “Hermione sent an acknowledgement but doesn’t

know if I read it

 “If I didn’t get her acknowledgement I’ll assume she

didn’t get my email

 “In that case I’ll go to the cafeteria

 “She’s uncertain, so she’ll meet me there

CS5412 Spring 2015 (Cloud Computing: Birman)

41

Ron had better send an Ack

Great! See yah…

CS5412 Spring 2015 (Cloud Computing: Birman)

42

Ron Hermione

R: Hermione, the weather is
beautiful! Let’s meet at the
sandwich stand outside.

H: I can hardly wait. I’ve been
in this dungeon studying and
haven’t seen the sun in weeks!

CS5412 Spring 2014 (Cloud Computing: Birman)

Why didn’t this help?

 Hermione got the ack… but she realizes that Ron

won’t be sure she got it

 Being unsure, he’s in the same state as before

 So he’ll go to the cafeteria, being dull and logical.

And so she meets him there.

CS5412 Spring 2015 (Cloud Computing: Birman)

43

New and improved protocol

 Hermione sends an ack. Ron acks the ack.

Hermione acks the ack of the ack….

 Suppose that noon arrives and Hermione has sent

her 117’th ack.

 Should she assume that lunch is outside in the sun, or

inside in the cafeteria?

CS5412 Spring 2015 (Cloud Computing: Birman)

44

How Ron and Hermione’s romance

(should have) ended
45

Ron Hermione

R: Hermione, the weather is
beautiful! Let’s meet at the
sandwich stand outside.

H: I can hardly wait. I’ve been in this
dungeon studying and haven’t seen the
sun in weeks!

CS5412 Spring 2014 (Cloud Computing: Birman)

Great! See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .

CS5412 Spring 2015 (Cloud Computing: Birman)

H. K. Rowling

CS5412 Spring 2015 (Cloud Computing: Birman)

46

 “I’ve been feeling that I

made a mistake… I really

wonder if Hermione shouldn’t

have ended up with Harry

Potter”

 “I hope I’m not breaking some little girl’s heart

saying this, but ever since I married her to Ron I’ve

just been feeling that they aren’t right for each

other…”

Moral of the story?

CS5412 Spring 2015 (Cloud Computing: Birman)

47

 Logicians are dull people and have miserable lives.

 Your illogical approach to chess

does have its advantages on

occasion, Captain.

 --Spock in Star Trek

Moral of the story?

CS5412 Spring 2015 (Cloud Computing: Birman)

48

 Logicians are dull people and have miserable lives.

 The real world demands leaps of faith: pure logic

isn’t enough.

 For our computing systems, this creates a puzzle,

since software normally behaves logically!

How do real people meet for lunch?

CS5412 Spring 2015 (Cloud Computing: Birman)

49

 They send one email, then go outside

 Mishaps happen, now and then, but we deal with those.

 In fact we know perfectly well that we can’t achieve

perfect agreement, and we cope with that

 In some sense a high probability of meeting outside for

lunch is just fine and we don’t insist on more

Things we just can’t do

 We can’t detect failures in a trustworthy, consistent

manner

 We can’t reach a state of “common knowledge”

concerning something not agreed upon in the first

place

 We can’t guarantee agreement on things (election of

a leader, update to a replicated variable) in a way

certain to tolerate failures

CS5412 Spring 2015 (Cloud Computing: Birman)

50

Back to 2PC and 3PC

CS5412 Spring 2015 (Cloud Computing: Birman)

51

 Summary of the state of the world?

 3PC would be better than 2PC in a perfect world

 In the real world, 3PC is more costly (extra round) but blocks
just the same (inaccurate failure detection)

 Failure detection tools could genuinely help but the cloud
trend is sort of in the opposite direction

 Cloud transactional standard requires an active, healthy
logging service. If it goes down, the cloud xtn subsystem
hangs until it restarts

 We’ll be using both 2PC and 3PC as a building block
but not necessarily to terminate transactions.

