CS5412 Spring 2015 (Cloud Computing: Birman) 1

CS5412:
TWO AND THREE PHASE

COMMIT

Continuing our consistency saga

Recall from last lecture:
Cloud-scale performance centers on replication

Consistency of replication depends on our ability to
talk about notions of time.

Lets us use terminology like “If B accesses service S after A
does, then B receives a response that is at least as current as
the state on which A’s response was based.”

Lamport: Don’t use clocks, use logical clocks
We looked at two forms, logical clocks and vector clocks

We also explored notion of an “instant in time” and
related it to something called a consistent cut

CS5412 Spring 2015 (Cloud Computing: Birman)

Next steps?

WEe’'ll create a second kind of building block
Two-phase commit

It's cousin, three-phase commit

These commit protocols (or a similar pattern) arise
often in distributed systems that replicate data

Closely tied to “consensus” or “agreement” on
events, and event order, and hence replication

CS5412 Spring 2015 (Cloud Computing: Birman)

The Two-Phase Commit Problem

The problem first was encountered in database
systems

Suppose a database system is updating some
complicated data structures that include parts
residing on more than one machine

So as they execute a “transaction” is built up in
which participants join as they are contacted

CS5412 Spring 2015 (Cloud Computing: Birman)

... SO what’s the “problem”?

Suppose that the transaction is interrupted by a crash
before it finishes

Perhaps, it was initiated by a leader process L

By now, we’ve done some work at P and Q, but a crash

causes P to reboot and “forget” the work L had started

Implicitly assumes that P might be keeping the pending work in
memory rather than in a safe place like on disk

But this is actually very common, to speed things up

Forced writes to a disk are very slow compared to in-memory
logging of information, and “persistent” RAM memory is costly

How can Q learn that it needs to back out?

CS5412 Spring 2015 (Cloud Computing: Birman)

The basic idea

We make a rule that P and Q (and other
participants) treat pending work as transient

You can safely crash and restart and discard it

If such a sequence occurs, we call it a “forced abort”

Transactional systems often treat commit and abort
as a special kind of keyword

CS5412 Spring 2015 (Cloud Computing: Birman)

A transaction

L executes:
Begin

{

Read some stuff, get some locks

Do some updates at P, Q, R...

}

Commit

If something goes wrong, executes “Abort”

CS5412 Spring 2015 (Cloud Computing: Birman)

Transaction...

Begins, has some kind of system-assigned id

Acquires pending state
Updates it did at various places it visited
Read and Update or Write locks it acquired

If something goes horribly wrong, can Abort

Otherwise if all went well, can request a Commit

But commit can fail. This is where the 2PC and 3PC
algorithms are used

CS5412 Spring 2015 (Cloud Computing: Birman)

The Two-Phase Commit (2PC) problem

Leader L has a set of places { P, Q, ... } it visited
Each place may have some pending state for this xtn

Takes form of pending updates or locks held

L asks “Can you still commit” and P, Q ... must reply

“No” if something has caused them to discard the state
of this transaction (lost updates, broken locks)

Usually occurs if a member crashes and then restarts

No reply treated as “No” (handles failed members)

CS5412 Spring 2015 (Cloud Computing: Birman)

What about “Yes’’¢

If a member replies “Yes” it moves to a state we call
prepared to commit

Up to then it could just abort in a unilateral way, i.e. if data
or locks were lost due to a crash/restart (or a timeout)

But once it says “I’'m prepared to commit” it must not lose
locks or data. So it will probably need to force data to
disk at this stage

Many systems push data to disk in background so all they
need to do is update a single bit on disk: “prepared=true”
but this disk-write is still considered costly event!

Then can reply “Yes”

CS5412 Spring 2015 (Cloud Computing: Birman)

Role of leader

So.... L sends out “Are you prepared?”

It waits and eventually has replies from {P, Q, ... }
“No” if someone replies no, or if a timeout occurs

“Yes” only if that participant actually replied “yes”and
hence is now in the prepared to commit state

If all participants are prepared to commit, L can
send a “Commit” message. Else L must send “Abort”

Notice that L could mistakenly abort. This is ok.

CS5412 Spring 2015 (Cloud Computing: Birman)

Participant receives a commit/abort

If participant is prepared to commit it waits for
outcome to be known

Learns that leader decided to Commit: It “finalizes” the
state by making updates permanent

Learns that leader decided to Abort: It discards any
updates

Then can release locks

CS5412 Spring 2015 (Cloud Computing: Birman)

Failure cases to consider

Two possible worries
Some participant might fail at some step of the protocol
The leader might fail at some step of the protocol

Notice how a participant moves from “participating’
to “prepared to commit” to “commited /aborted”

Leader moves from “doing work” to “inquiry” to
“commited /aborted”

CS5412 Spring 2015 (Cloud Computing: Birman)

Can think about cross-product of states

This is common in distributed protocols

We need to look at each member, and each state it
can be in

The system state is a vector (S|, S, Sq, ...)

Since each can be in 4 states there are 4N possible
scenarios we need to think about!

Many protocols are actually written in a state-
diagram form, but we’ll use English today

CS5412 Spring 2015 (Cloud Computing: Birman)

How the leader handles failures

Suppose L stays healthy and only participants fail

If a participant failed before voting, leader just aborts the
protocol

The participant might later recover and needs a way to find
out what happened

If failure causes it to forget the txn, no problem

For cases where a participant may know about the txn and want to
learn the outcome, we just keep a long log of outcomes and it can
look this txn up by its ID to find out

Writing to this log is a role of the leader (and slows it down)

CS5412 Spring 2015 (Cloud Computing: Birman)

What about a failure after vote?

The leader also needs to handle a participant that
votes “Yes” and hence is prepared, but then fails

In this case it won't receive the Commit/Abort message
Solved because the leader logs the outcome

On recovery that participant notices that it has a prepared
txn and consults the log

Must find the outcome there and must wait if it can’t find the
outcome information

Implication: Leader must log the outcome before sending
the Commit or Abort outcome message!

CS5412 Spring 2015 (Cloud Computing: Birman)

Now can think about participants

If a participant was involved but never was asked
to vote, it can always unilaterally abort

But once a participant votes “Yes” it must learn the
outcome and can’t terminate the txn until it does

E.g. must hold any pending updates, and locks

Can’t release them without knowing outcome

It obtains this from L, or from the outcomes log

CS5412 Spring 2015 (Cloud Computing: Birman)

The bad case

Some participant, maybe P, votes “Yes” but then leader
L seems to vanish

Maybe it died... maybe became disconnected from the
system (partitioning failure)

P is “stuck”. We say that it is “blocked”

Can P deduce the state?¢

If log reports outcome, P can make progress

What if the log doesn’t know the outcome? As long as we
follow rule that L logs outcome before telling anyone, safe
to commit in this case

CS5412 Spring 2015 (Cloud Computing: Birman)

So 2PC makes progress with a log

But this assumes we can access either the leader L,
or the log.

If neither is accessible, we're stuck

In any real system that uses 2PC a log is employed
but in many textbooks, 2PC is discussed without a
log service. What do we do in this case?

CS5412 Spring 2015 (Cloud Computing: Birman)

2PC but no log (or can’t reach it)

If P was told the list of participants when L
contacted it for the vote, P could poll them

E.g. P asks Q, R, S... “what state are you in2”

Suppose someone says “pending” or even “abort”,
or someone knows outcome was “commit’?

Now P can just abort or commit!

But what if N-1 say “pending” and 1 is inaccessible?

CS5412 Spring 2015 (Cloud Computing: Birman)

P remains blocked in this case

L plus one member, perhaps S, might know outcome
P is unable to determine what L could have done

Worse possible situation: L is both leader and also
participant and hence a single failure leaves the
other participants blocked!

CS5412 Spring 2015 (Cloud Computing: Birman)

Skeen & Stonebraker: 3PC

Skeen proposed a 3PC protocol, that adds one step
(and omits any log service)

With 3PC the leader runs 2 rounds:

“Are you able to commit”2 Participants reply “Yes/No”
“Abort” or “Prepare to commit”. They reply “OK”

“Commit”

Notice that Abort happens in round 2 but Commit
only can happen in round 3

CS5412 Spring 2015 (Cloud Computing: Birman)

State space gets even larger!

Now we need to think of 5N states
But Skeen points out that many can’t occur

For example we can’t see a mix of processes that are in
the Commit and Abort state

We could see some in “Running” and some in “Yes”
We could see some in “Yes” and some in “Prepared”
We could see some in “Prepared” and some in “Commit”

But by pushing “Commit” and “Abort” into different
rounds we reduce uncertainly

CS5412 Spring 2015 (Cloud Computing: Birman)

3PC recovery is complex

Skeen shows how, on recovery, we can poll the system
state

Any (or all) processes can do this

Can always deduce a safe outcome... provided that we
have an accurate failure detector

Concludes that 3PC, without any log service, and with
accurate failure detection is non-blocking

CS5412 Spring 2015 (Cloud Computing: Birman)

Failure detection in a network

Many think of Skeen’s 3PC as a practical protocol

But to really use 3PC we would need a perfect
failure detection service that never makes mistakes

It always says “P has failed” if, in fact, P has failed

And it never says “P has failed” if P is actually up

s it possible to build such a failure service?

CS5412 Spring 2015 (Cloud Computing: Birman)

Notions of failure

This leads us to think about failure “models”

Best: “Fail-stop’ with trusted notifications

Many things can fail in a distributed system
Network can drop packets, or the O/S can do so

Links can break causing a network partition that isolates one or
more nodes

Processes can fail by halting suddenly
A clock could malfunction, causing timers to fire incorrectly
A machine could freeze up for a while, then resume

Processes can corrupt their memory and behave badly without
actually crashing

A process could be taken over by a virus and might behave in a
malicious way that deliberately disrupts our system

Worst: Byzantine
CS5412 Spring 2015 (Cloud Computing: Birman)

“Real” systems?

Linux and Windows use timers for failure detection
These can fire even if the remote side is healthy
So we get “inaccurate” failure detections

Of course many kinds of crashes can be sensed
accurately so for those, we get trusted notifications

Some applications depend on TCP, but TCP itself
uses timers and so has the same problem

CS5412 Spring 2015 (Cloud Computing: Birman)

Byzantine case
Much debate around this

Since programs are buggy (always), it can be
appealing to just use a Byzantine model. A bug
gives random corrupt behavior... like a mild attack

But Byzantine model is hard to work with and can
be costly (you often must “outvote” the bad process)

CS5412 Spring 2015 (Cloud Computing: Birman)

Failure detection in a network

Return to our use case

2PC and 3PC are normally used in standard Linux
or Windows systems with timers to detect failure

Hence we get inaccurate failure sensing with possible
mistakes (e.g. P thinks L is faulty but L is fine)

3PC is also blocking in this case, although less likely to
block than 2PC

Can prove that any commit protocol would have
blocking states with inaccurate failure detection

CS5412 Spring 2015 (Cloud Computing: Birman)

World-Wide Failure Sensing

Vogels wrote a paper in which he argued that we
really could do much better

In a cloud computing setting, the cloud management
system often “forces” slow nodes to crash and restart

Used as a kind of all-around fixer-upper

Also helpful for elasticity and automated management

So in the cloud, management layer is a fairly
trustworthy partner, if we were to make use of it

We don’t make use of it, however, today

CS5412 Spring 2015 (Cloud Computing: Birman)

The Postman Always Rings Twice
I

11 Suppose the mailman wants to see you.

He rings and waits a few seconds

Nobody comes to the door... should he

assume you’ve died? k

JAK NCHOLSON
JSSICALANGE

1 Hopefully not

1 Vogels suggests that there are many reasons a
machine might timeout and yet not be faulty

CS5412 Spring 2015 (Cloud Computing: Birman)

Causes of delay in the cloud

Scheduling can be sluggish

A node might get a burst of messages that overflow its
input sockets and triggers message loss, or network
could have some kind of malfunction in its routers/links

A machine might become overloaded and slow because
too many virtual machines were mapped on it

An application might run wild and page heavily

CS5412 Spring 2015 (Cloud Computing: Birman)

Vogels suggests?

He recommended that we add some kind of failure
monitoring service as a standard network component

Instead of relying on timeout, even protocols like remote
procedure call (RPC) and TCP would ask the service
and it would tell them

It could do a bit of sleuthing first... e.g. ask the O/S on
that machine for information... check the network...

CS5412 Spring 2015 (Cloud Computing: Birman)

Why clouds don’t do this

Hamilton: In the cloud our focus tends to be on keeping
the “majority” of the system running

No matter what the excuse it might have, if some node is
slow it makes more sense to move on

Keeping the cloud up, as a whole, is way more valuable
than waiting for some slow node to catch up

End-user experience is what counts!

So the cloud is casual about killing things

... and avoids services like “failure sensing” since they
could become bottlenecks

CS5412 Spring 2015 (Cloud Computing: Birman)

Also, most software is buggy!

A mix of “Bohrbugs” and “Heisenbugs”

Bohrbugs: Boring and easy to fix. Like Bohr model of
the atom

Heisenbugs: They seem to hide when you try to pin them
down (caused by concurrency and problems that
corrupt a data structure that won’t be visited for a
while). Hard to fix because crash seems unrelated to
bug
Studies show that pretty much all programs retain
bugs over their full lifetime.

So if something is acting strange, it may be failing!

CS5412 Spring 2015 (Cloud Computing: Birman)

Worst of all... timing is flakey

At cloud scale, with millions of nodes, we can trust
timers at all

Too many things can cause problems that manifest
as timing faults or timeouts

Again, there are some famous models... and again,
none is ideal for describing real clouds

CS5412 Spring 2015 (Cloud Computing: Birman)

Synchronous and Asynchronous

Executions

CS5412 Spring 2015 (Cloud Computing: Birman)

Reality: neither one

Real distributed systems aren’t synchronous
Although a flight control computer can come close
Nor are they asynchronous

Software often treats them as asynchronous

In reality, clocks work well... so in practice we often use time cautiously
and can even put limits on message delays

For our purposes we usually start with an asynchronous model
Subsequently enrich it with sources of time when useful.

We sometimes assume a “public key” system. This lets us sign or encrypt
data where need arises

CS5412 Spring 2015 (Cloud Computing: Birman)

Thought problem

Ron and Hermione will meet for lunch. They’ll eat in
the cafeteria unless both are sure that the weather is
good

Hermione’s cubicle is in the crypt, so Ron will send email

Both have lots of meetings, and might not read email. So
she’ll acknowledge his message.

They’ll meet inside if one or the other is away from their
desk and misses the emadil.

Ron sees sun. Sends email. Hermione acks’s. Can
they meet outside?

CS5412 Spring 2015 (Cloud Computing: Birman)

Ron and Hermione

Hermione

R: Hermione, the weather is
beautiful! Let's meet at the
sandwich stand outside.

L H: I can hardly wait. I've been

in this dungeon studying and
haven’t seen the sun in weeks!

v v

CS5412 Spring 2015 (Cloud Computing: Birman)

They eat inside! Ron reasons:

“Hermione sent an acknowledgement but doesn’t
know if | read it

“If | didn’t get her acknowledgement I'll assume she
didn’t get my email

“In that case I'll go to the cafeteria

“She’s uncertain, so she’ll meet me there

CS5412 Spring 2015 (Cloud Computing: Birman)

Ron had better send an Ack

Hermione

R: Hermione, the weather is
beautiful! Let's meet at the
sandwich stand outside.

L H: I can hardly wait. I've been

in this dungeon studying and
haven’t seen the sun in weeks!

Great! See yah... S

v v

CS5412 Spring 2018 (Cloud Computing: Birman)

Why didn’t this help?

Hermione got the ack... but she realizes that Ron

won’t be sure she got it

Being unsure, he’s in the same state as before

So he’ll go to the cafeteria, being dull and logical.
And so she meets him there.

CS5412 Spring 2015 (Cloud Computing: Birman)

New and improved protocol

Hermione sends an ack. Ron acks the ack.
Hermione acks the ack of the ack....

Suppose that noon arrives and Hermione has sent
her 117°th ack.

Should she assume that lunch is outside in the sun, or
inside in the cafeteria?

CS5412 Spring 2015 (Cloud Computing: Birman)

How Ron and Hermione’s romance
(should have) ended

Ron Hermione

R: Hermione, the weather is
beautiful! Let's meet at the

| sandwich stand outside.

H: I can hardly wait. I've been in this
dungeon studying and haven't seen the
sun in weeks!

Great! See yah... »
H———

— | 1P
Got that... —

“ QOops, too late for lunch

Maybe tomorrow?

. m
v CS5412 Spring 2018 (Cloud Computing: Birman) Y

H. K. Rowling

“I've been feeling that |
made a mistake... | really
wonder if Hermione shouldn’t
have ended up with Harry
Potter”

“I hope I'm not breaking some little girl’s heart
saying this, but ever since | married her to Ron I've
just been feeling that they aren’t right for each
other...”

CS5412 Spring 2015 (Cloud Computing: Birman)

Moral of the story?

Logicians are dull people and have miserable lives.

Your illogical approach to chess
does have its advantages on
occasion, Captain.

--Spock in Star Trek

CS5412 Spring 2015 (Cloud Computing: Birman)

Moral of the story?

L oaict ol | ¥ o rablo lives.

The real world demands leaps of faith: pure logic
isn't enough.

For our computing systems, this creates a puzzle,
since software normally behaves logically!

CS5412 Spring 2015 (Cloud Computing: Birman)

How do real people meet for lunch?

They send one email, then go outside

Mishaps happen, now and then, but we deal with those.

In fact we know perfectly well that we can’t achieve
perfect agreement, and we cope with that

In some sense a high probability of meeting outside for
lunch is just fine and we don’t insist on more

CS5412 Spring 2015 (Cloud Computing: Birman)

Things we just can’t do

We can’t detect failures in a trustworthy, consistent
manner

We can’t reach a state of “common knowledge”
concerning something not agreed upon in the first
place

We can’t guarantee agreement on things (election of
a leader, update to a replicated variable) in a way
certain to tolerate failures

CS5412 Spring 2015 (Cloud Computing: Birman)

Back to 2PC and 3PC

Summary of the state of the world?
3PC would be better than 2PC in a perfect world

In the real world, 3PC is more costly (extra round) but blocks
just the same (inaccurate failure detection)

Failure detection tools could genuinely help but the cloud
trend is sort of in the opposite direction

Cloud transactional standard requires an active, healthy
logging service. If it goes down, the cloud xtn subsystem
hangs until it restarts

We'll be using both 2PC and 3PC as a building block
but not necessarily to terminate transactions.

CS5412 Spring 2015 (Cloud Computing: Birman)

