CS5412 Spring 2015 (Cloud Computing: Birman) 1

CS541 2:
TORRENTS AND TIT-FOR-TAT



BitTorrent

Widely used download technology

Implementations specialized for setting

Some focus on P2P downloads, e.g. patches

Others focus on use cases internal to corporate clouds

CS5412 Spring 2015 (Cloud Computing: Birman)



BitTorrent

The technology really has three aspects
A standard tht BitTorrent client systems follow
Some existing clients, e.g. the free Torrent client, PPLive

A clever idea: using “tit-for-tat” mechanisms to reward
good behavior and to punish bad behavior (reminder
of the discussion we had about RON...)

This third aspect is especially intriguing!

CS5412 Spring 2015 (Cloud Computing: Birman)



The basic BitTorrent Scenario

Millions want to download the same popular huge
files (for free)

1ISO’s

Media (the real example!)
Client-server model fails

Single server fails

Can’t afford to deploy enough servers

CS5412 Spring 2015 (Cloud Computing: Birman)



Why not use IP Multicast?

IP Multicast not a real option in general WAN
settings
Not supported by many ISPs

Most commonly seen in private data centers

Alternatives
End-host based Multicast
BitTorrent

Other P2P file-sharing schemes (from prior lectures)

CS5412 Spring 2015 (Cloud Computing: Birman)



Source ’ ’ ’
Router ’

“Interested” ’
End-host

CS5412 Spring 2015 (Cloud Computing: Birman)



Client-Server

/

O—

P

Source ‘ ‘

Router

“Interested” ‘
End-host

CS5412 Spring 2015 (Cloud Computing: Birman)



Client-Server
n

/

O—

P

Source ‘ ‘

Router

“Interested” ‘
End-host

CS5412 Spring 2015 (Cloud Computing: Birman)



IP multicast
o

o—==" \
R

Source ‘ ‘

Router

“Interested” ‘
End-host

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host based multicast

r
»—%\\\\

e

Source ‘ ‘
Router ‘

“Interested” ‘
End-host

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host based multicast

“Single-uploader” = “Multiple-uploaders”
Lots of nodes want to download
Make use of their uploading abilities as well

Node that has downloaded (part of) file will then
upload it to other nodes.

Uploading costs amortized across all nodes

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host based multicast

Also called “Application-level Multicast”

Many protocols proposed early this decade

Yoid (2000), Narada (2000), Overcast (2000), ALMI
(2001)

All use single trees

Problem with single trees?

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host multicast using single tree

Y

Source

/

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host multicast using single tree
e

Source

CS5412 Spring 2015 (Cloud Computing: Birman)



End-host multicast using single tree

Source

CS5412 Spring 2015 (Cloud Computing: Birman)

¢ Slow data transfer




End-host multicast using single tree

Tree is “push-based” — node receives data, pushes
data to children

Failure of “interior’-node affects downloads in entire
subtree rooted at node

Slow interior node similarly affects entire subtree
Also, leaf-nodes don’t do any sending!

Though later multi-tree / multi-path protocols
(Chunkyspread (2006), Chainsaw (2005), Bullet
(2003)) mitigate some of these issues

CS5412 Spring 2015 (Cloud Computing: Birman)



BitTorrent

Written by Bram Cohen (in Python) in 2001

“Pull-based” “swarming” approach
Each file split into smaller pieces

Nodes request desired pieces from neighbors

As opposedto parents pushing data that they receive
Pieces not downloaded in sequential order

Previous multicast schemes aimed to support “streaming”;
BitTorrent does not

Encourages contribution by all nodes

CS5412 Spring 2015 (Cloud Computing: Birman)



BitTorrent Swarm

Swarm
Set of peers all downloading the same file
Organized as a random mesh
Each node knows list of pieces downloaded by
neighbors
Node requests pieces it does not own from
neighbors

Exact method explained later

CS5412 Spring 2015 (Cloud Computing: Birman)



How a node enters a swarm

_— for file “popeye.mp4

11 File popeye.mp4.torrent
hosted at a (well-known)
webserver

1 The .torrent has address of
tracker for file

o1 The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2015 (Cloud
Computing: Birman)



How a node enters a swarm

www.bittorrent.com

o1 File popeye.mp4.torrent
hosted at a (well-known)
webserver

1 The .torrent has address of
tracker for file

1 The tracker, which runs on o
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2015 (Cloud
Computing: Birman)



How a node enters a swarm
_— for file “popeye.mp4”

www.bittorrent.com

B Tons

(A BitTorrent

11 File popeye.mp4.torrent
hosted at a (well-known)
webserver

Peer 71 The .torrent has address of

tracker for file

Tracker = The tracker, which runs on a

webserver as well, keeps

track of all peers
downloading file

CS5412 Spring 2015 (Cloud
Computing: Birman)



How a node enters a swarm

_— for file “popeye.mp4

www.bittorrent.com

Bkt Tows

Peer

3 Tracker

Swarm

File popeye.mp4.torrent
hosted at a (well-known)
webserver

The .torrent has address of
tracker for file

The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2015 (Cloud
Computing: Birman)



Contents of .torrent file

URL of tracker
Piece length — Usually 256 KB

SHA-1 hashes of each piece in file
For reliability

“files” — allows download of multiple files

CS5412 Spring 2015 (Cloud Computing: Birman)



Terminology

Seed: peer with the entire file
Original Seed: The first seed
Leech: peer that’s downloading the file
Fairer term might have been “downloader”
Sub-piece: Further subdivision of a piece

The “unit for requests” is a subpiece

But a peer uploads only after assembling complete
piece

CS5412 Spring 2015 (Cloud Computing: Birman)



Peer-peer transactions:
Choosing pieces to request

Rarest-first: Look at all pieces at all peers, and
request piece that’s owned by fewest peers

Increases diversity in the pieces downloaded

avoids case where a node and each of its peers have
exactly the same pieces; increases throughput

Increases likelihood all pieces still available even if
original seed leaves before any one node has
downloaded entire file

CS5412 Spring 2015 (Cloud Computing: Birman)



Choosing pieces to request

Random First Piece:

When peer starts to download, request random piece.

So as to assemble first complete piece quickly

Then participate in uploads

When first complete piece assembled, switch to rarest-
first

CS5412 Spring 2015 (Cloud Computing: Birman)



Choosing pieces to request

End-game mode:

When requests sent for all sub-pieces, (re)send requests
to all peers.

To speed up completion of download

Cancel request for downloaded sub-pieces

CS5412 Spring 2015 (Cloud Computing: Birman)



Tit-for-tat as incentive to upload

Want to encourage all peers to contribute

Peer A said to choke peer B if it (A) decides not to
upload to B

Each peer (say A) unchokes at most 4 interested peers
at any time
The three with the largest upload ratesto A
Where the tit-for-tat comes in

Another randomly chosen (Optimistic Unchoke)

To periodically look for better choices

CS5412 Spring 2015 (Cloud Computing: Birman)



Anti-snubbing

A peeris said to be snubbed if each of its peers
chokes it

To handle this, snubbed peer stops uploading to its
peers

Optimistic unchoking done more often

Hope is that will discover a new peer that will upload
fo us

CS5412 Spring 2015 (Cloud Computing: Birman)



Why BitTorrent took off

Better performance through “pull-based” transfer

Slow nodes don’t bog down other nodes

Allows uploading from hosts that have downloaded
parts of a file

In common with other end-host based multicast schemes

CS5412 Spring 2015 (Cloud Computing: Birman)



Why BitTorrent took off

Practical Reasons (perhaps more important!)

Working implementation (Bram Cohen) with simple well-
defined interfaces for plugging in new content

Many recent competitors got sued / shut down

Napster, Kazaa

Doesn’t do “search” per se. Users use well-known, trusted
sources to locate content

Avoids the pollution problem, where garbage is passed off as
authentic content

CS5412 Spring 2015 (Cloud Computing: Birman)



Pros and cons of BitTorrent

Pros
Proficient in utilizing partially downloaded files

Discourages “freeloading”

By rewarding fastest uploaders

Encourages diversity through “rarest-first”

Extends lifetime of swarm

Works well for “hot content”

CS5412 Spring 2015 (Cloud Computing: Birman)



Pros and cons of BitTorrent
e

1 Cons

Assumes all interested peers active at same time;
performance deteriorates if swarm “cools off”

Even worse: no trackers for obscure content

CS5412 Spring 2015 (Cloud Computing: Birman)



Pros and cons of BitTorrent

Dependence on centralized tracker: pro/con?

@ Single point of failure: New nodes can’t enter swarm
if tracker goes down
Lack of a search feature

© Prevents pollution attacks

@ Users need to resort to out-of-band search: well known
torrent-hosting sites / plain old web-search

CS5412 Spring 2015 (Cloud Computing: Birman)



“Trackerless” BitTorrent

To be more precise, “BitTorrent without a centralized-
tracker”

E.g.: Azureus
Uses a Distributed Hash Table (Kademlia DHT)
Tracker run by a normal end-host (not a web-server

anymore)

The original seeder could itself be the tracker

Or have a node in the DHT randomly picked to act as the
tracker

CS5412 Spring 2015 (Cloud Computing: Birman)



Prior to Netflix “explosion”, BitTorrent

dominated the INternet!
I S

Notwork Traffic (Download, 24 hours)

B serore

B sOomey B e
} B rauton W OterNonPp
3 B onnes I Regoonng

B cowr»

gsggsgeegegsegss
CIILP=SERIN

300

g
g

0100

88888
883883

oreo

g8
882

1900

- - - s =

Source | Streamsigt 510 deployed in a Tier 1 ISP

(From Cachelogic, 2004)

CS5412 Spring 2015 (Cloud Computing: Birman)



Why is (studying) BitTorrent important?

BitTorrent consumes significant amount of internet
traffic today

In 2004, BitTorrent accounted for 30% of all internet
traffic (Total P2P was 60%), according to Cachelogic

Slightly lower share in 2005 (possibly because of legal
action), but still significant

BT always used for legal software (linux iso) distribution
too

Recently: legal media downloads (Fox)

CS5412 Spring 2015 (Cloud Computing: Birman)



Example finding from a recent study

Gribble showed that most BitTorrent streams “fail”

He found that the number of concurrent users is often
too small, and the transfer too short, for the incentive

structure to do anything

No time to “learn”
His suggestion: add a simple history mechanism

Behavior from yesterday can be used today. But of
course this ignores “dynamics” seen in the Internet...

CS5412 Spring 2015 (Cloud Computing: Birman)



BAR Gossip

Work done at UT Austin looking at gossip model

Same style of protocol seen in Kelips

They ask what behaviors a node might exhibit
Byzantine: the node is malicious
Altrustic: The node answers every request

Rational: The node maximizes own benefit

Under this model, is there an optimal behavior?

[BAR Gossip. Harry C. Li, Allen Clement, Edmund L. Wong, Jeff
Napper, Indrajit Roy, Lorenzo Alvisi, Michael Dahlin. OSDI 2006]

CS5412 Spring 2015 (Cloud Computing: Birman)



Basic strategy

They assume cryptographic keys (PKI)
Used to create signatures: detect and discard junk

Also employed to prevent malfactor from pretending
that it send messages but they were lost in network

This is used to create a scheme that allows nodes to
detect and punish non-compliance

CS5412 Spring 2015 (Cloud Computing: Birman)



Key steps in BAR Gossip

History exchange: two partieslearn about the
updates the other party holds

Update exchange: each party copies a subset of
these updates into a briefcase that is sent,
encrypted, to the other party

Two cases: balanced exchange for normal operation

Optimistic push to help one party catch up

Key exchange, where the parties swap the keys
needed to access the updatesin the two
briefcases.

CS5412 Spring 2015 (Cloud Computing: Birman)



Obvious concern: Failed key exchange

What if a rational node chooses not to send the key (or
sends an invalid key)?

Can’t “solve” this problem; they prove a theorem

But by tracking histories, BAR gossip allows altruistic and
rational nodes to operate fairly enough

Central idea is that the balanced exchange should
reflect the quality of data exchanged in past

This can be determined from the history and penalizes a
node that tries to cheat during exchange

Nash equillibrium strategy is to send the keys, so rational
nodes will do so!

CS5412 Spring 2015 (Cloud Computing: Birman)



QOutcomes achieved

BAR gossip protocol provides good convergence as
long as:
No more than 20% of nodes are Byzantine

No more than 40% collude.

Generally seen as the “ultimate story” for
BitTorrent-like schemes

CS5412 Spring 2015 (Cloud Computing: Birman)



Insights gained?

Collaborative download schemes can improve
download speeds very dramatically

They avoid sender overload

Are at risk when participants deviate from protocol

Game theory suggests possible remedies
BitTorrent is a successful and very practical tool

Widely used inside data centers

Also popular for P2P downloads

In China, PPLive media streaming system very successful
and very widely deployed

CS5412 Spring 2015 (Cloud Computing: Birman)



References

BitTorrent
“Incentives build robustness in BitTorrent”, Bram Cohen

BitTorrent Protocol Specification:

Poisoning /Pollution in DHT’s:

“Index Poisoning Attack in P2P file sharing systems”

“Pollution in P2P File Sharing Systems”

CS5412 Spring 2015 (Cloud Computing: Birman)


http://www.bittorrent.org/protocol.html

