
CS5412:

TORRENTS AND TIT-FOR-TAT

Ken Birman

1 CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture VII

BitTorrent

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 Widely used download technology

 Implementations specialized for setting

 Some focus on P2P downloads, e.g. patches

 Others focus on use cases internal to corporate clouds

BitTorrent

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 The technology really has three aspects

 A standard tht BitTorrent client systems follow

 Some existing clients, e.g. the free Torrent client, PPLive

 A clever idea: using “tit-for-tat” mechanisms to reward

good behavior and to punish bad behavior (reminder

of the discussion we had about RON...)

 This third aspect is especially intriguing!

The basic BitTorrent Scenario

 Millions want to download the same popular huge

files (for free)

 ISO’s

 Media (the real example!)

 Client-server model fails

 Single server fails

 Can’t afford to deploy enough servers

CS5412 Spring 2015 (Cloud Computing: Birman)

4

Why not use IP Multicast?

 IP Multicast not a real option in general WAN
settings

 Not supported by many ISPs

 Most commonly seen in private data centers

 Alternatives

 End-host based Multicast

 BitTorrent

 Other P2P file-sharing schemes (from prior lectures)

CS5412 Spring 2015 (Cloud Computing: Birman)

5

Router

“Interested”

 End-host

Source

CS5412 Spring 2015 (Cloud Computing: Birman)

6

Router

“Interested”

 End-host

Source

Client-Server

CS5412 Spring 2015 (Cloud Computing: Birman)

7

Router

“Interested”

 End-host

Source

Client-Server

Overloaded!

CS5412 Spring 2015 (Cloud Computing: Birman)

8

Router

“Interested”

 End-host

Source

IP multicast

CS5412 Spring 2015 (Cloud Computing: Birman)

9

Router

“Interested”

 End-host

Source

End-host based multicast

CS5412 Spring 2015 (Cloud Computing: Birman)

10

End-host based multicast

 “Single-uploader”  “Multiple-uploaders”

 Lots of nodes want to download

 Make use of their uploading abilities as well

 Node that has downloaded (part of) file will then

upload it to other nodes.

 Uploading costs amortized across all nodes

CS5412 Spring 2015 (Cloud Computing: Birman)

11

End-host based multicast

 Also called “Application-level Multicast”

 Many protocols proposed early this decade

 Yoid (2000), Narada (2000), Overcast (2000), ALMI

(2001)

 All use single trees

 Problem with single trees?

CS5412 Spring 2015 (Cloud Computing: Birman)

12

End-host multicast using single tree

Source

CS5412 Spring 2015 (Cloud Computing: Birman)

13

End-host multicast using single tree

Source

CS5412 Spring 2015 (Cloud Computing: Birman)

14

End-host multicast using single tree

Source

Slow data transfer

CS5412 Spring 2015 (Cloud Computing: Birman)

15

End-host multicast using single tree

 Tree is “push-based” – node receives data, pushes

data to children

 Failure of “interior”-node affects downloads in entire

subtree rooted at node

 Slow interior node similarly affects entire subtree

 Also, leaf-nodes don’t do any sending!

 Though later multi-tree / multi-path protocols

(Chunkyspread (2006), Chainsaw (2005), Bullet

(2003)) mitigate some of these issues

CS5412 Spring 2015 (Cloud Computing: Birman)

16

BitTorrent

 Written by Bram Cohen (in Python) in 2001

 “Pull-based” “swarming” approach

 Each file split into smaller pieces

 Nodes request desired pieces from neighbors

 As opposed to parents pushing data that they receive

 Pieces not downloaded in sequential order

 Previous multicast schemes aimed to support “streaming”;

BitTorrent does not

 Encourages contribution by all nodes

CS5412 Spring 2015 (Cloud Computing: Birman)

17

BitTorrent Swarm

 Swarm

 Set of peers all downloading the same file

 Organized as a random mesh

 Each node knows list of pieces downloaded by

neighbors

 Node requests pieces it does not own from

neighbors

 Exact method explained later

CS5412 Spring 2015 (Cloud Computing: Birman)

18

How a node enters a swarm

 for file “popeye.mp4”

 File popeye.mp4.torrent

hosted at a (well-known)

webserver

 The .torrent has address of

tracker for file

 The tracker, which runs on a

webserver as well, keeps

track of all peers

downloading file

CS5412 Spring 2015 (Cloud

Computing: Birman)
19

How a node enters a swarm

 for file “popeye.mp4”

www.bittorrent.com

Peer

1

 File popeye.mp4.torrent

hosted at a (well-known)

webserver

 The .torrent has address of

tracker for file

 The tracker, which runs on a

webserver as well, keeps

track of all peers

downloading file

CS5412 Spring 2015 (Cloud

Computing: Birman)
20

How a node enters a swarm

 for file “popeye.mp4”

Peer

Tracker

2

www.bittorrent.com

 File popeye.mp4.torrent

hosted at a (well-known)

webserver

 The .torrent has address of

tracker for file

 The tracker, which runs on a

webserver as well, keeps

track of all peers

downloading file

CS5412 Spring 2015 (Cloud

Computing: Birman)
21

How a node enters a swarm

 for file “popeye.mp4”

Peer

Tracker 3

www.bittorrent.com

Swarm

 File popeye.mp4.torrent

hosted at a (well-known)

webserver

 The .torrent has address of

tracker for file

 The tracker, which runs on a

webserver as well, keeps

track of all peers

downloading file

CS5412 Spring 2015 (Cloud

Computing: Birman)
22

Contents of .torrent file

 URL of tracker

 Piece length – Usually 256 KB

 SHA-1 hashes of each piece in file

 For reliability

 “files” – allows download of multiple files

CS5412 Spring 2015 (Cloud Computing: Birman)

23

Terminology

 Seed: peer with the entire file

 Original Seed: The first seed

 Leech: peer that’s downloading the file

 Fairer term might have been “downloader”

 Sub-piece: Further subdivision of a piece

 The “unit for requests” is a subpiece

 But a peer uploads only after assembling complete

piece

CS5412 Spring 2015 (Cloud Computing: Birman)

24

Peer-peer transactions:

Choosing pieces to request

 Rarest-first: Look at all pieces at all peers, and

request piece that’s owned by fewest peers

 Increases diversity in the pieces downloaded

 avoids case where a node and each of its peers have
exactly the same pieces; increases throughput

 Increases likelihood all pieces still available even if
original seed leaves before any one node has
downloaded entire file

CS5412 Spring 2015 (Cloud Computing: Birman)

25

Choosing pieces to request

 Random First Piece:

 When peer starts to download, request random piece.

 So as to assemble first complete piece quickly

 Then participate in uploads

 When first complete piece assembled, switch to rarest-

first

CS5412 Spring 2015 (Cloud Computing: Birman)

26

Choosing pieces to request

 End-game mode:

 When requests sent for all sub-pieces, (re)send requests

to all peers.

 To speed up completion of download

 Cancel request for downloaded sub-pieces

CS5412 Spring 2015 (Cloud Computing: Birman)

27

Tit-for-tat as incentive to upload

 Want to encourage all peers to contribute

 Peer A said to choke peer B if it (A) decides not to

upload to B

 Each peer (say A) unchokes at most 4 interested peers

at any time

 The three with the largest upload rates to A

 Where the tit-for-tat comes in

 Another randomly chosen (Optimistic Unchoke)

 To periodically look for better choices

CS5412 Spring 2015 (Cloud Computing: Birman)

28

Anti-snubbing

 A peer is said to be snubbed if each of its peers

chokes it

 To handle this, snubbed peer stops uploading to its

peers

 Optimistic unchoking done more often

 Hope is that will discover a new peer that will upload

to us

CS5412 Spring 2015 (Cloud Computing: Birman)

29

Why BitTorrent took off

 Better performance through “pull-based” transfer

 Slow nodes don’t bog down other nodes

 Allows uploading from hosts that have downloaded
parts of a file

 In common with other end-host based multicast schemes

CS5412 Spring 2015 (Cloud Computing: Birman)

30

Why BitTorrent took off

 Practical Reasons (perhaps more important!)

 Working implementation (Bram Cohen) with simple well-

defined interfaces for plugging in new content

 Many recent competitors got sued / shut down

 Napster, Kazaa

 Doesn’t do “search” per se. Users use well-known, trusted

sources to locate content

 Avoids the pollution problem, where garbage is passed off as

authentic content

CS5412 Spring 2015 (Cloud Computing: Birman)

31

Pros and cons of BitTorrent

 Pros

 Proficient in utilizing partially downloaded files

 Discourages “freeloading”

 By rewarding fastest uploaders

 Encourages diversity through “rarest-first”

 Extends lifetime of swarm

 Works well for “hot content”

CS5412 Spring 2015 (Cloud Computing: Birman)

32

Pros and cons of BitTorrent

 Cons

 Assumes all interested peers active at same time;

performance deteriorates if swarm “cools off”

 Even worse: no trackers for obscure content

CS5412 Spring 2015 (Cloud Computing: Birman)

33

Pros and cons of BitTorrent

 Dependence on centralized tracker: pro/con?

 Single point of failure: New nodes can’t enter swarm

if tracker goes down

 Lack of a search feature

 Prevents pollution attacks

 Users need to resort to out-of-band search: well known

torrent-hosting sites / plain old web-search

CS5412 Spring 2015 (Cloud Computing: Birman)

34

“Trackerless” BitTorrent

 To be more precise, “BitTorrent without a centralized-

tracker”

 E.g.: Azureus

 Uses a Distributed Hash Table (Kademlia DHT)

 Tracker run by a normal end-host (not a web-server

anymore)

 The original seeder could itself be the tracker

 Or have a node in the DHT randomly picked to act as the

tracker

CS5412 Spring 2015 (Cloud Computing: Birman)

35

Prior to Netflix “explosion”, BitTorrent

dominated the INternet!

(From CacheLogic, 2004)

CS5412 Spring 2015 (Cloud Computing: Birman)

36

Why is (studying) BitTorrent important?

 BitTorrent consumes significant amount of internet
traffic today

 In 2004, BitTorrent accounted for 30% of all internet
traffic (Total P2P was 60%), according to CacheLogic

 Slightly lower share in 2005 (possibly because of legal
action), but still significant

 BT always used for legal software (linux iso) distribution
too

 Recently: legal media downloads (Fox)

CS5412 Spring 2015 (Cloud Computing: Birman)

37

Example finding from a recent study

CS5412 Spring 2015 (Cloud Computing: Birman)

38

 Gribble showed that most BitTorrent streams “fail”

 He found that the number of concurrent users is often

too small, and the transfer too short, for the incentive

structure to do anything

 No time to “learn”

 His suggestion: add a simple history mechanism

 Behavior from yesterday can be used today. But of

course this ignores “dynamics” seen in the Internet...

BAR Gossip

CS5412 Spring 2015 (Cloud Computing: Birman)

39

 Work done at UT Austin looking at gossip model

 Same style of protocol seen in Kelips

 They ask what behaviors a node might exhibit

 Byzantine: the node is malicious

 Altrustic: The node answers every request

 Rational: The node maximizes own benefit

 Under this model, is there an optimal behavior?
[BAR Gossip. Harry C. Li, Allen Clement, Edmund L. Wong, Jeff

Napper, Indrajit Roy, Lorenzo Alvisi, Michael Dahlin. OSDI 2006]

Basic strategy

CS5412 Spring 2015 (Cloud Computing: Birman)

40

 They assume cryptographic keys (PKI)

 Used to create signatures: detect and discard junk

 Also employed to prevent malfactor from pretending

that it send messages but they were lost in network

 This is used to create a scheme that allows nodes to

detect and punish non-compliance

Key steps in BAR Gossip

CS5412 Spring 2015 (Cloud Computing: Birman)

41

1. History exchange: two parties learn about the
updates the other party holds

2. Update exchange: each party copies a subset of
these updates into a briefcase that is sent,
encrypted, to the other party
 Two cases: balanced exchange for normal operation

 Optimistic push to help one party catch up

3. Key exchange, where the parties swap the keys
needed to access the updates in the two
briefcases.

Obvious concern: Failed key exchange

CS5412 Spring 2015 (Cloud Computing: Birman)

42

 What if a rational node chooses not to send the key (or
sends an invalid key)?

 Can’t “solve” this problem; they prove a theorem

 But by tracking histories, BAR gossip allows altruistic and
rational nodes to operate fairly enough

 Central idea is that the balanced exchange should
reflect the quality of data exchanged in past

 This can be determined from the history and penalizes a
node that tries to cheat during exchange

 Nash equillibrium strategy is to send the keys, so rational
nodes will do so!

Outcomes achieved

CS5412 Spring 2015 (Cloud Computing: Birman)

43

 BAR gossip protocol provides good convergence as

long as:

 No more than 20% of nodes are Byzantine

 No more than 40% collude.

 Generally seen as the “ultimate story” for

BitTorrent-like schemes

Insights gained?

CS5412 Spring 2015 (Cloud Computing: Birman)

44

 Collaborative download schemes can improve
download speeds very dramatically

 They avoid sender overload

 Are at risk when participants deviate from protocol

 Game theory suggests possible remedies

 BitTorrent is a successful and very practical tool

 Widely used inside data centers

 Also popular for P2P downloads

 In China, PPLive media streaming system very successful
and very widely deployed

References

 BitTorrent

 “Incentives build robustness in BitTorrent”, Bram Cohen

 BitTorrent Protocol Specification:

http://www.bittorrent.org/protocol.html

 Poisoning/Pollution in DHT’s:

 “Index Poisoning Attack in P2P file sharing systems”

 “Pollution in P2P File Sharing Systems”

CS5412 Spring 2015 (Cloud Computing: Birman)

45

http://www.bittorrent.org/protocol.html

