
CS5412:

THE BASE METHODOLOGY

VERSUS THE ACID MODEL

Ken Birman

1 CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture VIII

Methodology versus model?

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 Today’s lecture is about an apples and oranges

debate that has gripped the cloud community

 A methodology is a “way of doing” something

 For example, there is a methodology for starting fires

without matches using flint and other materials

 A model is really a mathematical construction

 We give a set of definitions (i.e. fault-tolerance)

 Provide protocols that provably satisfy the definitions

 Properties of model, hopefully, translate to application-level

guarantees

The ACID model

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 A model for correct behavior of databases

 Based on the concept of transaction

 A transaction is a sequence of operations on database

or data store that form a single unit of work.

 Operations: reads or writes

 A transaction transforms a database from one consistent

state to another

 During execution the database may be inconsistent

 All operations must succeed; otherwise transaction fails

Body of the transaction performs reads and

writes, sometimes called queries and updates

ACID as a methodology

CS5412 Spring 2015 (Cloud Computing: Birman)

4

 We teach it all the time in our database courses

 Students write transactional code

Begin

 let employee t = Emp.Record(“Tony”);

 t.status = “retired”;

 customer c: c.AccountRep==“Tony”

 c.AccountRep = “Sally”

Commit;

 System executes this code in an all-or-nothing way

Begin signals the start of the transaction

Commit asks the database to make the effects

permanent. If a crash happens before this, or

if the code executes Abort, the transaction rolls

back and leaves no trace

ACID model properties

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 Issues:

 Concurrent execution of multiple transactions

 Recovery from failure

 Name was coined (no surprise) in California in 60’s

 Atomicity: Either all operations of the transaction are properly
reflected in the database (commit) or none of them are (abort).

 Consistency: If the database is in a consistent state before the
start of a transaction it will be in a consistent state after its
completion.

 Isolation: Effects of ongoing transactions are not visible to
transaction executed concurrently. Basically says “we’ll hide any
concurrency”

 Durability: Once a transaction commits, updates can’t be lost or
rolled back

ACID example

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 Transaction to transfer $10000 from account A to account B:
1. read(A)
2. A := A – 10000
3. write(A)
4. read(B)
5. B := B + 10000
6. write(B)

 Consistency requirement – the sum of A and B is unchanged
by the execution of the transaction.

 Atomicity requirement — if the transaction fails after step 3
and before step 6, the system should ensure that its updates
are not reflected in the database, else an inconsistency will
result.

ACID example continued…

CS5412 Spring 2015 (Cloud Computing: Birman)

7

 Durability requirement — once the user has been notified
that the transaction has completed (i.e., the transfer of the
$10000 has taken place), the updates to the database by
the transaction must persist despite failures.

 Isolation requirement — if between steps 3 and 6, another
transaction is allowed to access the partially updated
database, it will see an inconsistent database
(the sum A + B will be less than it should be).
Can be ensured trivially by running transactions serially, that
is one after the other. However, executing multiple
transactions concurrently has significant benefits, as we will
see.

Why ACID is helpful

CS5412 Spring 2015 (Cloud Computing: Birman)

8

 Developer doesn’t need to worry about a
transaction leaving some sort of partial state

 For example, showing Tony as retired and yet leaving
some customer accounts with him as the account rep

 Similarly, a transaction can’t glimpse a partially
completed state of some concurrent transaction

 Eliminates worry about transient database inconsistency
that might cause a transaction to crash

 Analogous situation: thread A is updating a linked list
and thread B tries to scan the list while A is running

Implementation considerations

CS5412 Spring 2015 (Cloud Computing: Birman)

9

 Atomicity and Durability:

 Shadow-paging (copy-on-write):

 updates are applied to a partial copy of the database,

 the new copy is activated when the transaction commits.

 Write-ahead logging (in-place):

 all modifications are written to a log before they are

applied.

 After crash: go to the latest checkpoint, replay log.

Implementation considerations

CS5412 Spring 2015 (Cloud Computing: Birman)

10

 Isolation:

 Concurrency control mechanisms: determine the

interaction between concurrent transactions.

 Various levels:

 Serializability

 Repeatable reads

 Read committed

 Read uncommitted

ACID another example

CS5412 Spring 2015 (Cloud Computing: Birman)

11

 Imagine the following set of transactions:

 T0: Employee.Create("Sally", "Intern", Intern.BaseSalary);

 T1: Sally.salary = Sally.salary*1.05%

 T2: Sally.Title =" Supervisor";

 Sally.Salary = Supervisor.BaseSalary;

 T3: Print(SUM(e.Salary where e.Title="Intern")/ Count(e

WHERE e.Title == "Intern"));

 Print(SUM(e.Salary where e.Title="Supervisor")/ Count(e

WHERE e.Title == "Supervisor"))

ACID another example

CS5412 Spring 2015 (Cloud Computing: Birman)

12

 What happens if order changes:

 T0, T1, T2, T3 vs. T0, T2, T1, T3 vs. T0, T3, T1, T2

 Which outcome is ‘correct’?

 Is there a case where multiple outcomes are valid?

 What ordering rule needs to be respected for the

system to be an ACID database?

Serial and Serializable executions

CS5412 Spring 2015 (Cloud Computing: Birman)

13

 A “serial” execution is one in which there is at most one

transaction running at a time, and it always completes

via commit or abort before another starts

 “Serializability” is the “illusion” of a serial execution

 Transactions execute concurrently and their operations

interleave at the level of the database files

 Yet database is designed to guarantee an outcome identical

to some serial execution: it masks concurrency

 In past they used locking; these days “snapshot isolation”

 Will revisit this topic in April and see how they do it

Implementation considerations

CS5412 Spring 2015 (Cloud Computing: Birman)

14

 Consistency: A state is consistent if there is no
violation of any integrity constraints

 Consistency is expressed as predicates data which
serves as a precondition, post-condition, and
transformation condition on any transaction

 Application specific

 Developer’s responsibility

All ACID implementations have costs

CS5412 Spring 2015 (Cloud Computing: Birman)

15

 Locking mechanisms involve competing for locks and
there are overheads associated with how long they are
held and how they are released at Commit

 Snapshot isolation mechanisms using locking for updates
but also have an additional version based way of
handing reads

 Forces database to keep a history of each data item

 As a transaction executes, picks the versions of each item on
which it will run

 So… there are costs, not so small

Dangers of Replication

CS5412 Spring 2015 (Cloud Computing: Birman)

16

 Investigated the costs of transactional ACID model on
replicated data in “typical” settings

 Found two cases

 Embarrassingly easy ones: transactions that don’t conflict at all
(like Facebook updates by a single owner to a page that others
might read but never change)

 Conflict-prone ones: transactions that sometimes interfere and in
which replicas could be left in conflicting states if care isn’t taken
to order the updates

 Scalability for the latter case will be terrible

 Solutions they recommend involve sharding and coding
transactions to favor the first case

[The Dangers of Replication and a Solution . Jim Gray, Pat Helland,

 Dennis Shasha. Proc. 1996 ACM SIGMOD.]

Approach?

CS5412 Spring 2015 (Cloud Computing: Birman)

17

 They do a paper-and-pencil analysis

 Estimate how much work will be done as transactions

execute, roll-back

 Count costs associated with doing/undoing operations

and also delays due to lock conflicts that force waits

 Show that even under very optimistic assumptions

slowdown will be O(n2) in size of replica set (shard)

 If approach is naïve, O(n5) slowdown is possible!

This motivates BASE

CS5412 Spring 2015 (Cloud Computing: Birman)

18

 Proposed by eBay researchers

 Found that many eBay employees came from
transactional database backgrounds and were used to
the transactional style of “thinking”

 But the resulting applications didn’t scale well and
performed poorly on their cloud infrastructure

 Goal was to guide that kind of programmer to a
cloud solution that performs much better

 BASE reflects experience with real cloud applications

 “Opposite” of ACID

 [D. Pritchett. BASE: An Acid Alternative. ACM Queue, July 28, 2008.]

A “methodology”

CS5412 Spring 2015 (Cloud Computing: Birman)

19

 BASE involves step-by-step transformation of a

transactional application into one that will be far

more concurrent and less rigid

 But it doesn’t guarantee ACID properties

 Argument parallels (and actually cites) CAP: they

believe that ACID is too costly and often, not needed

 BASE stands for “Basically Available Soft-State

Services with Eventual Consistency”.

Terminology

CS5412 Spring 2015 (Cloud Computing: Birman)

20

 Basically Available: Like CAP, goal is to promote

rapid responses.

 BASE papers point out that in data centers partitioning

faults are very rare and are mapped to crash failures

by forcing the isolated machines to reboot

 But we may need rapid responses even when some

replicas can’t be contacted on the critical path

Terminology

CS5412 Spring 2015 (Cloud Computing: Birman)

21

 Basically Available: Fast response even if some

replicas are slow or crashed

 Soft State Service: Runs in first tier

 Can’t store any permanent data

 Restarts in a “clean” state after a crash

 To remember data either replicate it in memory in

enough copies to never lose all in any crash or pass it to

some other service that keeps “hard state”

Terminology

CS5412 Spring 2015 (Cloud Computing: Birman)

22

 Basically Available: Fast response even if some
replicas are slow or crashed

 Soft State Service: No durable memory

 Eventual Consistency: OK to send “optimistic”
answers to the external client

 Could use cached data (without checking for staleness)

 Could guess at what the outcome of an update will be

 Might skip locks, hoping that no conflicts will happen

 Later, if needed, correct any inconsistencies in an offline
cleanup activity

How BASE is used

CS5412 Spring 2015 (Cloud Computing: Birman)

23

 Start with a transaction, but remove Begin/Commit

 Now fragment it into “steps” that can be done in
parallel, as much as possible

 Ideally each step can be associated with a single event
that triggers that step: usually, delivery of a multicast

 Leader that runs the transaction stores these events
in a “message queuing middleware” system

 Like an email service for programs

 Events are delivered by the message queuing system

 This gives a kind of all-or-nothing behavior

Base in action

CS5412 Spring 2015 (Cloud Computing: Birman)

24

Begin

 let employee t = Emp.Record(“Tony”);

 t.status = “retired”;

 customer c: c.AccountRep==“Tony”

 c.AccountRep = “Sally”

Commit;

t.Status = retired

 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

Base in action

CS5412 Spring 2015 (Cloud Computing: Birman)

25

t.Status = retired

 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

t.Status = retired
 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

Start

More BASE suggestions

CS5412 Spring 2015 (Cloud Computing: Birman)

26

 Consider sending the reply to the user before

finishing the operation

 Modify the end-user application to mask any

asynchronous side-effects that might be noticeable

 In effect, “weaken” the semantics of the operation and

code the application to work properly anyhow

 Developer ends up thinking hard and working hard!

Before BASE… and after

CS5412 Spring 2015 (Cloud Computing: Birman)

27

 Code was often much too slow, and scaled poorly,

and end-user waited a long time for responses

 With BASE

 Code itself is way more concurrent, hence faster

 Elimination of locking, early responses, all make end-

user experience snappy and positive

 But we do sometimes notice oddities when we look hard

BASE side-effects

CS5412 Spring 2015 (Cloud Computing: Birman)

28

 Suppose an eBay auction is running fast and furious

 Does every single bidder necessarily see every bid?

 And do they see them in the identical order?

 Clearly, everyone needs to see the winning bid

 But slightly different bidding histories shouldn’t hurt

much, and if this makes eBay 10x faster, the speed

may be worth the slight change in behavior!

BASE side-effects

CS5412 Spring 2015 (Cloud Computing: Birman)

29

 Upload a YouTube video, then search for it

 You may not see it immediately

 Change the “initial frame” (they let you pick)

 Update might not be visible for an hour

 Access a FaceBook page when your friend says

she’s posted a photo from the party

 You may see an X

BASE in action: Dynamo

CS5412 Spring 2015 (Cloud Computing: Birman)

30

 Amazon was interested in improving the scalability

of their shopping cart service

 A core component widely used within their system

 Functions as a kind of key-value storage solution

 Previous version was a transactional database and, just

as the BASE folks predicted, wasn’t scalable enough

 Dynamo project created a new version from scratch

Dynamo approach

CS5412 Spring 2015 (Cloud Computing: Birman)

31

 They made an initial decision to base Dynamo on a
Chord-like DHT structure

 Plan was to run this DHT in tier 2 of the Amazon cloud
system, with one instance of Dynamo in each Amazon
data center and no “linkage” between them

 This works because each data center has “ownership”
for some set of customers and handles all of that
person’s purchases locally.

The challenge

CS5412 Spring 2015 (Cloud Computing: Birman)

32

 Amazon quickly had their version of Chord up and
running, but then encountered a problem

 Chord isn’t very “delay tolerant”

 So if a component gets slow or overloaded, Chord was
very impacted

 Yet delays are common in the cloud (not just due to
failures, although failure is one reason for problems)

 Team asked: how can Dynamo tolerate delay?

Idea they had

CS5412 Spring 2015 (Cloud Computing: Birman)

33

 Key issue is to find the node on which to store a

key-value tuple, or one that has the value

 Routing can tolerate delay fairly easily

 Suppose node K wants to use the finger to node K+2i

and gets no acknowledgement

 Then Dynamo just tries again with node K+2i-1

 This works at the “cost” of slight stretch in the routing

path in the rare cases when it occurs

What if the actual “home” node fails?

CS5412 Spring 2015 (Cloud Computing: Birman)

34

 Suppose that we reach the point at which the next

hop should take us to the owner for the hashed key

 But the target doesn’t respond

 It may have crashed, or have a scheduling problem

(overloaded), or be suffering some kind of burst of

network loss

 All common issues in Amazon’s data centers

 Then they do the Get/Put on the next node that

actually responds even if this is the “wrong” one!

K+2i-1

Dynamo example: picture

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19):
API is designed
to look transactional
but actually maps to
Dynamo DHT

K19

CS5412 Spring 2015 (Cloud Computing: Birman)

35

Dynamo example in pictures

CS5412 Spring 2015 (Cloud Computing: Birman)

36

 Notice: Ideally, this strategy works perfectly

 Recall that Chord normally replicates a key-value pair

on a few nodes, so we would expect to see several

nodes that “know” the current mapping: a shard

 After the intended target recovers the repair code will

bring it back up to date by copying key-value tuples

 But sometimes Dynamo jumps beyond the target

“range” and ends up in the wrong shard

Consequences?

CS5412 Spring 2015 (Cloud Computing: Birman)

37

 If this happens, Dynamo will eventually repair itself

 … But meanwhile, some slightly confusing things happen

 Put might succeed, yet a Get might fail on the key

 Could cause user to “buy” the same item twice

 This is a risk they are willing to take because the event

is rare and the problem can usually be corrected

before products are shipped in duplicate

Dynamo-DB

CS5412 Spring 2015 (Cloud Computing: Birman)

38

 When Dynamo was introduced, it had a quick uptake at

Amazon but then stalled

 For most key-value uses it was perfect and easily adopted

 But for applications coded against Oracle’s SQL interfaces

that expected transactions, too much recoding was needed

 Dynamo-DB builds a kind of fake transactional SQL API

over Dynamo

 It doesn’t guarantee ACID, but was close enough to what the

database people needed and wanted to be adopted.

Werner Vogels on BASE

CS5412 Spring 2015 (Cloud Computing: Birman)

39

 He argues that delays as small as 100ms have a
measurable impact on Amazon’s income!

 People wander off before making purchases

 So snappy response is king

 True, Dynamo and Dynamo-DB have weak consistency
and may incur some delay to achieve consistency

 There isn’t any real delay “bound”

 But they can hide most of the resulting errors by making sure
that applications which use Dynamo don’t make
unreasonable assumptions about how Dynamo will behave

Conclusion?

CS5412 Spring 2015 (Cloud Computing: Birman)

40

 BASE is a widely popular alternative to transactions

 Used (mostly) for first tier cloud applications

 Weakens consistency for faster response, later cleans up

 eBay, Amazon Dynamo shopping cart both use BASE

 Later we’ll see that strongly consistent options do exist

 In-memory chain-replication

 Send+Flush using Isis2

 Snapshot-isolation instead of full ACID transactions

 Will look more closely at latter two in a few weeks

