CS 5220: Parallel Graph Algorithms

David Bindel
2017-11-14



Mathematically: G = (V,E) where EC V x V

- Convention: |V|=nand |[E| =m

- May be directed or undirected

- May have weights wy : V—>Rorwg: E:— R

- May have other node or edge attributes as well

- Pathis [(uj, u,-JH)]f-“]:1 € E*, sum of weights is length

- Diameter is max shortest path length between any s,t € V

Generalizations:

- Hypergraph (edges in )
- Multigraph (multiple copies of edges)
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Types of graphs

Many possible structures:

- Lines and trees

- Completely regular grids

- Planar graphs (no edges need cross)
- Low-dimensional Euclidean

- Power law graphs

Algorithms are not one-size-fits-all!



Ends of a spectrum

Planar Power law
Vertex degree | Uniformly small | P(deg = R) ~ R~7
Radius | Q(v/n) Small
Edge separators | O(+/n) nothing small
Linear solve | Direct OK Iterative

Prototypical apps | PDEs

Social networks

Calls for different methods!
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Applications: Routing and shortest paths
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Applications: Traversal, ranking, clustering
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Unweighted Node weighted Edge weighted

- Web crawl / traversal
- PageRank, HITS
- Clustering similar documents
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Applications: Sparse solvers

- Ordering for sparse factorization
- Partitioning

- Graph coarsening for AMG

- Other preconditioning ops...
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http://yifanhu.net/GALLERY/GRAPHS/GIF_SMALL/Pothen@barth5.html

Applications: Dimensionality reduction
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http://web.mit.edu/cocosci/isomap/isomap.html

Common building blocks

- Traversals

- Shortest paths

- Spanning tree

- Flow computations
- Topological sort

- Coloring

... and most of sparse linear algebra.
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Over-simple models

Let t, = idealized time on p processors

- t; = work

- ts = span (or depth, or critical path length)



One implication

Don't bother with parallel DFS! Span is Q(n).
Let's spend a few minutes on more productive algorithms...



Parallel BFS

Simple idea: parallelize across frontiers

- Pro: Simple to think about
- Pro: Lots of parallelism with small radius?

« Con: What if frontiers are small?



Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

- Form set S with start + random nodes, |S| = ©(y/nlogn) —
long shortest paths must go through S with high prob

- Take /n steps of BFS from each seed in S

- Form aux weighted graph for distances between seeds

- Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?
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- Indicate frontier at each stage by x
- X' = ATx (multiply=select, add=min)
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Parallel BFS: LA perspective

Key ideas:

- At some point, switch from top-down expanding frontier
(“are you my child?”) to bottom-up checking for parents
(“are you my parent?”)

- Use 2D blocking of adjacency

- Temporally partition work: vertex processed by at most
one processor at a time, cycle processors (“systolic
rotation”)

Together gives state-of-art performance. But...
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Single-source shortest path

Classic algorithm: Dijkstra

- Dequeue closest point from frontier and expand frontier

- Update priority queue of distances (can be done in
parallel)

- Repeat

Or run serial Dijkstra from different sources for APSP.
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Alternate idea: label correcting

Initialize d[u] with distance over-estimates to source
- d[s]=0
* Repeatedly relax d[u] := min, y)ee d[v] + w(v, u)

Converges (eventually) as long as all nodes visited repeatedly,
updates are atomic. If serial sweep in a consistent order, call it
Bellman-Ford.
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Single-source shortest path: A-stepping

Alternate approach: hybrid algorithm

- Process a “bucket” at a time

- Relax “light” edges (weight < A) which might add to
current bucket

- When bucket empties, relax “heavy” edges a la Dijkstra
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Maximal independent sets

- S C Vindependent if none are neighbors.

- Maximal if no others can be added and remain
independent.

- Maximum if no other maximal independent set is bigger.

- Maximum is NP-hard; maximal is easy in one processor
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Simple greedy MIS
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- Start with S empty
- For each v € Vsequentially, add v to S if possible.
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Luby’s algorithm

- InitS:=10
- Init candidates C :=V
- While C# 0
- Label each v with a random r(v)
- For each v e Cin parallel, if r(v) < minps r(u)
- MovevfromCto S
- Remove neighbors from v to C

Very probably finishes in O(logn) rounds.
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Luby’s algorithm (round 1)
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Luby’s algorithm (round 1)
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A fundamental problem

Many graph ops are

- Computationally cheap (per node or edge)

- Bad for locality

Memory bandwidth as a limiting factor.
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Consider:

- 323 million in US (fits in 32-bit int)
- About 350 Facebook friends each

- Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...
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Graph representation: Adjacency matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...
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Graph representation: Coordinate

- Tuples: (i, ], wj)
- Pro: Easy to update
- Con: Slow for multiply
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Graph representation: Adj list

- Linked lists of adjacent nodes
- Pro: Still easy to update
- Con: May cost more to store than coord?
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Graph representations: CSR

Adata
64|5]11]6|*|col

[5]7[8]9]1] ptr

Pro: traversal? Con: updates
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Graph representations: implicit

- ldea: Never materialize a graph data structure
- Key: Provide traversal primitives
- Pro: Explicit rep'n sometimes overkill for one-off graphs?

- Con: Hard to use canned software (except NLA?)
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Graph algorithms and linear algebra

- Looks like LA

- Floyd-Warshall

- Breadth-first search?
- Really is standard LA

- Spectral partitioning and clustering
- PageRank and some other centralities
- “Laplacian Paradigm” (Spielman, Teng, others...)
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Graph algorithms and linear algebra

Semirings have @ and ® s.t.

- Addition is commutative+associative with an identity 0
- Multiplication is associative with identity 1

- Both are distributive

ca®0=0®a=0

- But no subtraction or division

Technically have modules (vs vector spaces) over semirings
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Graph algorithms and linear algebra

Example: min-plus

- @ = min and additive identity 0 = c©
- ® = + and multiplicative identity 1= 0

- Useful for breadth-first search (on board)
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Graph BLAS

http://www.graphblas.org/

- Provisional API as of late May 2017
- (Opaque) internal sparse matrix data structure

- Allows operations over misc semirings
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http://www.graphblas.org/

Graph frameworks

Several to choose from!

- Pregel, Apache Giraph, Stanford GPS, ...
- Graphlab family

- Graphlab: Original distributed memory
- PowerGraph: Tuned toward “natural” (power law) networks
- GraphChi: Chihuahua - shared memory vs distributed

- Outperformed by Galois, Ligra, BlockGRACE, others

- But... programming model was easy
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Graph frameworks

- “Think as a vertex”

- Each vertex updates locally
- Exchanges messages with neighbors
- Runtime actually schedules updates/messages

- Message sent at super-step S arrives at S + 1
- Looks like BSP
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At what COST?

“Scalability! But at what COST?”
McSherry, Isard, Murray
HotOS 15

You can have a second computer once you've shown
you kRnow how to use the first one.
— Paul Barham (quoted in intro to HotOS15 paper)

- COST = Configuration that Outperforms a Single Thread
- Observation: many systems have unbounded COST!
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