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Graphs

Mathematically: G = (V, E) where E ⊂ V× V

• Convention: |V| = n and |E| = m
• May be directed or undirected
• May have weights wV : V→ R or wE : E :→ R

• May have other node or edge attributes as well
• Path is [ (ui,ui+1) ]ℓi=1 ∈ E∗, sum of weights is length
• Diameter is max shortest path length between any s, t ∈ V

Generalizations:

• Hypergraph (edges in Vd)
• Multigraph (multiple copies of edges)
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Types of graphs

Many possible structures:

• Lines and trees
• Completely regular grids
• Planar graphs (no edges need cross)
• Low-dimensional Euclidean
• Power law graphs
• ...

Algorithms are not one-size-fits-all!
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Ends of a spectrum

Planar Power law
Vertex degree Uniformly small P(deg = k) ∼ k−γ

Radius Ω(
√
n) Small

Edge separators O(
√
n) nothing small

Linear solve Direct OK Iterative
Prototypical apps PDEs Social networks

Calls for different methods!
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Applications: Routing and shortest paths

11/13/2017 Ithaca, New York to New York - Google Maps

https://www.google.com/maps/dir/Ithaca,+New+York/New+York/@41.532125,-76.369989,8z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1s0x89d08182e0af88f7:0xae52… 1/1

Map data ©2017 Google 20 mi 

4 h
230 miles

via I-81 S and I-80 E
Fastest route now due to tra�c conditions

 This route has tolls.

4 h 14 min
234 miles

via NY-17 E

4 h 17 min
247 miles

via I-81 S and I-78 E

Drive 230 miles, 4 hIthaca, New York to New York
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Applications: Traversal, ranking, clustering

Unweighted Node weighted Edge weighted

• Web crawl / traversal
• PageRank, HITS
• Clustering similar documents
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Applications: Sparse solvers

• Ordering for sparse factorization
• Partitioning
• Graph coarsening for AMG
• Other preconditioning ops...
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http://yifanhu.net/GALLERY/GRAPHS/GIF_SMALL/Pothen@barth5.html


Applications: Dimensionality reduction
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http://web.mit.edu/cocosci/isomap/isomap.html


Common building blocks

• Traversals
• Shortest paths
• Spanning tree
• Flow computations
• Topological sort
• Coloring
• ...

... and most of sparse linear algebra.
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Over-simple models

0

1 1

2 2 2 2

3 3

Let tp = idealized time on p processors

• t1 = work
• t∞ = span (or depth, or critical path length)
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One implication

Don’t bother with parallel DFS! Span is Ω(n).
Let’s spend a few minutes on more productive algorithms...
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Parallel BFS

Simple idea: parallelize across frontiers

• Pro: Simple to think about
• Pro: Lots of parallelism with small radius?
• Con: What if frontiers are small?
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Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

• Form set S with start + random nodes, |S| = Θ(
√
n logn) —

long shortest paths must go through S with high prob
• Take

√
n steps of BFS from each seed in S

• Form aux weighted graph for distances between seeds
• Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?
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LA take

• Indicate frontier at each stage by x
• x′ = ATx (multiply=select, add=min)
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Parallel BFS: LA perspective

Key ideas:

• At some point, switch from top-down expanding frontier
(“are you my child?”) to bottom-up checking for parents
(“are you my parent?”)

• Use 2D blocking of adjacency
• Temporally partition work: vertex processed by at most
one processor at a time, cycle processors (“systolic
rotation”)

Together gives state-of-art performance. But...
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Single-source shortest path

Classic algorithm: Dijkstra

• Dequeue closest point from frontier and expand frontier
• Update priority queue of distances (can be done in
parallel)

• Repeat

Or run serial Dijkstra from different sources for APSP.
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Alternate idea: label correcting

Initialize d[u] with distance over-estimates to source

• d[s] = 0
• Repeatedly relax d[u] := min(v,u)∈E d[v] + w(v,u)

Converges (eventually) as long as all nodes visited repeatedly,
updates are atomic. If serial sweep in a consistent order, call it
Bellman-Ford.
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Single-source shortest path: ∆-stepping

Alternate approach: hybrid algorithm

• Process a “bucket” at a time
• Relax “light” edges (weight < ∆) which might add to
current bucket

• When bucket empties, relax “heavy” edges a la Dijkstra
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Maximal independent sets

• S ⊂ V independent if none are neighbors.
• Maximal if no others can be added and remain
independent.

• Maximum if no other maximal independent set is bigger.
• Maximum is NP-hard; maximal is easy in one processor
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Simple greedy MIS

1

23
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6

7

8

9 10
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• Start with S empty
• For each v ∈ V sequentially, add v to S if possible.
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Luby’s algorithm

• Init S := ∅
• Init candidates C := V
• While C ̸= ∅

• Label each v with a random r(v)
• For each v ∈ C in parallel, if r(v) < minN (v) r(u)

• Move v from C to S
• Remove neighbors from v to C

Very probably finishes in O(logn) rounds.
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Luby’s algorithm (round 1)

7.89

7.153.89

4.77 0.54

0.77

7.69

2.27

4.04 6.64

4.29
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Luby’s algorithm (round 1)

7.02

8.414.37

6.13 4.97

5.41

5.32

3.46

5.59 8.29

4.00
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A fundamental problem

Many graph ops are

• Computationally cheap (per node or edge)
• Bad for locality

Memory bandwidth as a limiting factor.
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Big data?

Consider:

• 323 million in US (fits in 32-bit int)
• About 350 Facebook friends each
• Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...
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Graph representation: Adjacency matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...
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Graph representation: Coordinate

• Tuples: (i, j,wij)
• Pro: Easy to update
• Con: Slow for multiply
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Graph representation: Adj list

• Linked lists of adjacent nodes
• Pro: Still easy to update
• Con: May cost more to store than coord?
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Graph representations: CSR

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata
col

ptr

Pro: traversal? Con: updates
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Graph representations: implicit

• Idea: Never materialize a graph data structure
• Key: Provide traversal primitives
• Pro: Explicit rep’n sometimes overkill for one-off graphs?
• Con: Hard to use canned software (except NLA?)
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Graph algorithms and linear algebra

• Looks like LA
• Floyd-Warshall
• Breadth-first search?

• Really is standard LA
• Spectral partitioning and clustering
• PageRank and some other centralities
• “Laplacian Paradigm” (Spielman, Teng, others...)
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Graph algorithms and linear algebra

Semirings have ⊕ and ⊗ s.t.

• Addition is commutative+associative with an identity 0
• Multiplication is associative with identity 1
• Both are distributive
• a⊗ 0 = 0⊗ a = 0
• But no subtraction or division

Technically have modules (vs vector spaces) over semirings
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Graph algorithms and linear algebra

Example: min-plus

• ⊕ = min and additive identity 0 ≡ ∞
• ⊗ = + and multiplicative identity 1 ≡ 0
• Useful for breadth-first search (on board)
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Graph BLAS

http://www.graphblas.org/

• Provisional API as of late May 2017
• (Opaque) internal sparse matrix data structure
• Allows operations over misc semirings
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http://www.graphblas.org/


Graph frameworks

Several to choose from!

• Pregel, Apache Giraph, Stanford GPS, ...
• GraphLab family

• GraphLab: Original distributed memory
• PowerGraph: Tuned toward “natural” (power law) networks
• GraphChi: Chihuahua – shared memory vs distributed

• Outperformed by Galois, Ligra, BlockGRACE, others
• But... programming model was easy
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Graph frameworks

• “Think as a vertex”
• Each vertex updates locally
• Exchanges messages with neighbors
• Runtime actually schedules updates/messages

• Message sent at super-step S arrives at S+ 1
• Looks like BSP
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At what COST?

“Scalability! But at what COST?”
McSherry, Isard, Murray

HotOS 15

You can have a second computer once you’ve shown
you know how to use the first one.

– Paul Barham (quoted in intro to HotOS15 paper)

• COST = Configuration that Outperforms a Single Thread
• Observation: many systems have unbounded COST!
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