CS 5220: Parallel Graph Algorithms

David Bindel 2017-11-14

Graphs

Mathematically: G = (V, E) where $E \subset V \times V$

- Convention: |V| = n and |E| = m
- May be directed or undirected
- May have weights $w_V : V \to \mathbb{R}$ or $w_E : E :\to \mathbb{R}$
- May have other node or edge attributes as well
- Path is $[(u_i, u_{i+1})]_{i=1}^{\ell} \in E^*$, sum of weights is length
- Diameter is max shortest path length between any $s,t\in V$

Generalizations:

- Hypergraph (edges in V^d)
- Multigraph (multiple copies of edges)

Types of graphs

Many possible structures:

- Lines and trees
- Completely regular grids
- Planar graphs (no edges need cross)
- Low-dimensional Euclidean
- Power law graphs

• ...

Algorithms are not one-size-fits-all!

	Planar	Power law
Vertex degree	Uniformly small	$P(\deg = k) \sim k^{-\gamma}$
Radius	$\Omega(\sqrt{n})$	Small
Edge separators	$O(\sqrt{n})$	nothing small
Linear solve	Direct OK	Iterative
Prototypical apps	PDEs	Social networks

Calls for different methods!

Applications: Routing and shortest paths

Applications: Traversal, ranking, clustering

- Web crawl / traversal
- PageRank, HITS
- Clustering similar documents

Applications: Sparse solvers

- Ordering for sparse factorization
- Partitioning
- $\cdot\,$ Graph coarsening for AMG
- Other preconditioning ops...

Applications: Dimensionality reduction

Common building blocks

- Traversals
- Shortest paths
- Spanning tree
- Flow computations
- Topological sort
- Coloring
- ...
- ... and most of sparse linear algebra.

Over-simple models

Let t_p = idealized time on p processors

- $t_1 = work$
- $t_{\infty} = \text{span}$ (or depth, or critical path length)

Don't bother with parallel DFS! Span is $\Omega(n)$. Let's spend a few minutes on more productive algorithms...

Simple idea: parallelize across frontiers

- Pro: Simple to think about
- Pro: Lots of parallelism with small radius?
- Con: What if frontiers are small?

Assuming a high-diameter graph:

- Form set *S* with start + random nodes, $|S| = \Theta(\sqrt{n} \log n) \log$ shortest paths must go through *S* with high prob
- Take \sqrt{n} steps of BFS from each seed in S
- Form aux weighted graph for distances between seeds
- Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?

- Indicate frontier at each stage by x
- $x' = A^T x$ (multiply=select, add=min)

Key ideas:

- At some point, switch from top-down expanding frontier ("are you my child?") to bottom-up checking for parents ("are you my parent?")
- Use 2D blocking of adjacency
- Temporally partition work: vertex processed by at most one processor at a time, cycle processors ("systolic rotation")

Together gives state-of-art performance. But...

Classic algorithm: Dijkstra

- Dequeue closest point from frontier and expand frontier
- Update priority queue of distances (can be done in parallel)
- Repeat

Or run serial Dijkstra from different sources for APSP.

Initialize d[u] with distance over-estimates to source

- d[s] = 0
- Repeatedly relax $d[u] := \min_{(v,u) \in E} d[v] + w(v,u)$

Converges (eventually) as long as all nodes visited repeatedly, updates are atomic. If serial sweep in a consistent order, call it Bellman-Ford. Alternate approach: hybrid algorithm

- Process a "bucket" at a time
- Relax "light" edges (weight < Δ) which might add to current bucket
- When bucket empties, relax "heavy" edges a la Dijkstra

- $S \subset V$ independent if none are neighbors.
- *Maximal* if no others can be added and remain independent.
- Maximum if no other maximal independent set is bigger.
- Maximum is NP-hard; maximal is easy in one processor

Simple greedy MIS

- Start with S empty
- For each $v \in V$ sequentially, add v to S if possible.

- Init S := \emptyset
- Init candidates C := V
- While $C \neq \emptyset$
 - Label each v with a random r(v)
 - For each $v \in C$ in parallel, if $r(v) < \min_{\mathcal{N}(v)} r(u)$
 - Move v from C to S
 - $\cdot\,$ Remove neighbors from v to C

Very probably finishes in $O(\log n)$ rounds.

Luby's algorithm (round 1)

Luby's algorithm (round 1)

Many graph ops are

- Computationally cheap (per node or edge)
- Bad for locality

Memory bandwidth as a limiting factor.

Consider:

- 323 million in US (fits in 32-bit int)
- About 350 Facebook friends each
- Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...

Graph representation: Adjacency matrix

Pro: efficient for dense graphs Con: wasteful for sparse case...

- Tuples: (*i*, *j*, *w*_{*ij*})
- Pro: Easy to update
- \cdot Con: Slow for multiply

- Linked lists of adjacent nodes
- Pro: Still easy to update
- Con: May cost more to store than coord?

Graph representations: CSR

Pro: traversal? Con: updates

- Idea: Never materialize a graph data structure
- Key: Provide traversal primitives
- Pro: Explicit rep'n sometimes overkill for one-off graphs?
- Con: Hard to use canned software (except NLA?)

- Looks like LA
 - Floyd-Warshall
 - Breadth-first search?
- Really is standard LA
 - Spectral partitioning and clustering
 - PageRank and some other centralities
 - "Laplacian Paradigm" (Spielman, Teng, others...)

Semirings have \oplus and \otimes s.t.

- \cdot Addition is commutative+associative with an identity 0
- Multiplication is associative with identity 1
- Both are distributive
- $\cdot \ a \otimes 0 = 0 \otimes a = 0$
- But no subtraction or division

Technically have modules (vs vector spaces) over semirings

Example: min-plus

- $\boldsymbol{\cdot}~\oplus=$ min and additive identity 0 $\equiv\infty$
- : $\otimes = +$ and multiplicative identity $1 \equiv 0$
- Useful for breadth-first search (on board)

http://www.graphblas.org/

- Provisional API as of late May 2017
- (Opaque) internal sparse matrix data structure
- Allows operations over misc semirings

Several to choose from!

- Pregel, Apache Giraph, Stanford GPS, ...
- GraphLab family
 - GraphLab: Original distributed memory
 - PowerGraph: Tuned toward "natural" (power law) networks
 - GraphChi: Chihuahua shared memory vs distributed
- Outperformed by Galois, Ligra, BlockGRACE, others
- But... programming model was easy

- "Think as a vertex"
 - Each vertex updates locally
 - Exchanges messages with neighbors
 - Runtime actually schedules updates/messages
- $\cdot\,$ Message sent at super-step S arrives at S $+\,1\,$
- Looks like BSP

"Scalability! But at what COST?" McSherry, Isard, Murray HotOS 15

You can have a second computer once you've shown you know how to use the first one.

– Paul Barham (quoted in intro to HotOS15 paper)

- COST = Configuration that Outperforms a Single Thread
- Observation: many systems have unbounded COST!