
CS 5220: Parallel Graph Algorithms

David Bindel
2017-11-14

1

Graphs

Mathematically: G = (V, E) where E ⊂ V× V

• Convention: |V| = n and |E| = m
• May be directed or undirected
• May have weights wV : V→ R or wE : E :→ R

• May have other node or edge attributes as well
• Path is [(ui,ui+1)]ℓi=1 ∈ E∗, sum of weights is length
• Diameter is max shortest path length between any s, t ∈ V

Generalizations:

• Hypergraph (edges in Vd)
• Multigraph (multiple copies of edges)

2

Types of graphs

3

Types of graphs

4

Types of graphs

5

Types of graphs

6

Types of graphs

7

Types of graphs

8

Types of graphs

Many possible structures:

• Lines and trees
• Completely regular grids
• Planar graphs (no edges need cross)
• Low-dimensional Euclidean
• Power law graphs
• ...

Algorithms are not one-size-fits-all!

9

Ends of a spectrum

Planar Power law
Vertex degree Uniformly small P(deg = k) ∼ k−γ

Radius Ω(
√
n) Small

Edge separators O(
√
n) nothing small

Linear solve Direct OK Iterative
Prototypical apps PDEs Social networks

Calls for different methods!

10

Applications: Routing and shortest paths

11/13/2017 Ithaca, New York to New York - Google Maps

https://www.google.com/maps/dir/Ithaca,+New+York/New+York/@41.532125,-76.369989,8z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1s0x89d08182e0af88f7:0xae52… 1/1

Map data ©2017 Google 20 mi

4 h
230 miles

via I-81 S and I-80 E
Fastest route now due to tra�c conditions

 This route has tolls.

4 h 14 min
234 miles

via NY-17 E

4 h 17 min
247 miles

via I-81 S and I-78 E

Drive 230 miles, 4 hIthaca, New York to New York

11

Applications: Traversal, ranking, clustering

Unweighted Node weighted Edge weighted

• Web crawl / traversal
• PageRank, HITS
• Clustering similar documents

12

Applications: Sparse solvers

• Ordering for sparse factorization
• Partitioning
• Graph coarsening for AMG
• Other preconditioning ops...

13

http://yifanhu.net/GALLERY/GRAPHS/GIF_SMALL/Pothen@barth5.html

Applications: Dimensionality reduction

14

http://web.mit.edu/cocosci/isomap/isomap.html

Common building blocks

• Traversals
• Shortest paths
• Spanning tree
• Flow computations
• Topological sort
• Coloring
• ...

... and most of sparse linear algebra.

15

Over-simple models

0

1 1

2 2 2 2

3 3

Let tp = idealized time on p processors

• t1 = work
• t∞ = span (or depth, or critical path length)

16

One implication

Don’t bother with parallel DFS! Span is Ω(n).
Let’s spend a few minutes on more productive algorithms...

17

Parallel BFS

Simple idea: parallelize across frontiers

• Pro: Simple to think about
• Pro: Lots of parallelism with small radius?
• Con: What if frontiers are small?

18

Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

• Form set S with start + random nodes, |S| = Θ(
√
n logn) —

long shortest paths must go through S with high prob
• Take

√
n steps of BFS from each seed in S

• Form aux weighted graph for distances between seeds
• Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?

19

LA take

• Indicate frontier at each stage by x
• x′ = ATx (multiply=select, add=min)

20

Parallel BFS: LA perspective

Key ideas:

• At some point, switch from top-down expanding frontier
(“are you my child?”) to bottom-up checking for parents
(“are you my parent?”)

• Use 2D blocking of adjacency
• Temporally partition work: vertex processed by at most
one processor at a time, cycle processors (“systolic
rotation”)

Together gives state-of-art performance. But...

21

Single-source shortest path

Classic algorithm: Dijkstra

• Dequeue closest point from frontier and expand frontier
• Update priority queue of distances (can be done in
parallel)

• Repeat

Or run serial Dijkstra from different sources for APSP.

22

Alternate idea: label correcting

Initialize d[u] with distance over-estimates to source

• d[s] = 0
• Repeatedly relax d[u] := min(v,u)∈E d[v] + w(v,u)

Converges (eventually) as long as all nodes visited repeatedly,
updates are atomic. If serial sweep in a consistent order, call it
Bellman-Ford.

23

Single-source shortest path: ∆-stepping

Alternate approach: hybrid algorithm

• Process a “bucket” at a time
• Relax “light” edges (weight < ∆) which might add to
current bucket

• When bucket empties, relax “heavy” edges a la Dijkstra

24

Maximal independent sets

• S ⊂ V independent if none are neighbors.
• Maximal if no others can be added and remain
independent.

• Maximum if no other maximal independent set is bigger.
• Maximum is NP-hard; maximal is easy in one processor

25

Simple greedy MIS

1

23

4 5

6

7

8

9 10

11

• Start with S empty
• For each v ∈ V sequentially, add v to S if possible.

26

Luby’s algorithm

• Init S := ∅
• Init candidates C := V
• While C ̸= ∅

• Label each v with a random r(v)
• For each v ∈ C in parallel, if r(v) < minN (v) r(u)

• Move v from C to S
• Remove neighbors from v to C

Very probably finishes in O(logn) rounds.

27

Luby’s algorithm (round 1)

7.89

7.153.89

4.77 0.54

0.77

7.69

2.27

4.04 6.64

4.29

28

Luby’s algorithm (round 1)

7.02

8.414.37

6.13 4.97

5.41

5.32

3.46

5.59 8.29

4.00

29

A fundamental problem

Many graph ops are

• Computationally cheap (per node or edge)
• Bad for locality

Memory bandwidth as a limiting factor.

30

Big data?

Consider:

• 323 million in US (fits in 32-bit int)
• About 350 Facebook friends each
• Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...

31

Graph representation: Adjacency matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...

32

Graph representation: Coordinate

• Tuples: (i, j,wij)
• Pro: Easy to update
• Con: Slow for multiply

33

Graph representation: Adj list

• Linked lists of adjacent nodes
• Pro: Still easy to update
• Con: May cost more to store than coord?

34

Graph representations: CSR

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata
col

ptr

Pro: traversal? Con: updates

35

Graph representations: implicit

• Idea: Never materialize a graph data structure
• Key: Provide traversal primitives
• Pro: Explicit rep’n sometimes overkill for one-off graphs?
• Con: Hard to use canned software (except NLA?)

36

Graph algorithms and linear algebra

• Looks like LA
• Floyd-Warshall
• Breadth-first search?

• Really is standard LA
• Spectral partitioning and clustering
• PageRank and some other centralities
• “Laplacian Paradigm” (Spielman, Teng, others...)

37

Graph algorithms and linear algebra

Semirings have ⊕ and ⊗ s.t.

• Addition is commutative+associative with an identity 0
• Multiplication is associative with identity 1
• Both are distributive
• a⊗ 0 = 0⊗ a = 0
• But no subtraction or division

Technically have modules (vs vector spaces) over semirings

38

Graph algorithms and linear algebra

Example: min-plus

• ⊕ = min and additive identity 0 ≡ ∞
• ⊗ = + and multiplicative identity 1 ≡ 0
• Useful for breadth-first search (on board)

39

Graph BLAS

http://www.graphblas.org/

• Provisional API as of late May 2017
• (Opaque) internal sparse matrix data structure
• Allows operations over misc semirings

40

http://www.graphblas.org/

Graph frameworks

Several to choose from!

• Pregel, Apache Giraph, Stanford GPS, ...
• GraphLab family

• GraphLab: Original distributed memory
• PowerGraph: Tuned toward “natural” (power law) networks
• GraphChi: Chihuahua – shared memory vs distributed

• Outperformed by Galois, Ligra, BlockGRACE, others
• But... programming model was easy

41

Graph frameworks

• “Think as a vertex”
• Each vertex updates locally
• Exchanges messages with neighbors
• Runtime actually schedules updates/messages

• Message sent at super-step S arrives at S+ 1
• Looks like BSP

42

At what COST?

“Scalability! But at what COST?”
McSherry, Isard, Murray

HotOS 15

You can have a second computer once you’ve shown
you know how to use the first one.

– Paul Barham (quoted in intro to HotOS15 paper)

• COST = Configuration that Outperforms a Single Thread
• Observation: many systems have unbounded COST!

43

