
CS 5220: Load Balancing

David Bindel
2017-11-09

1



Inefficiencies in parallel code

Poor single processor performance

• Typically in the memory system
• Saw this in matrix multiply assignment

2



Inefficiencies in parallel code

Overhead for parallelism

• Thread creation, synchronization, communication
• Saw this in moshpit and shallow water assignments

3



Inefficiencies in parallel code

Load imbalance

• Different amounts of work across processors
• Different speeds / available resources
• Insufficient parallel work
• All this can change over phases

4



Where does the time go?

• Load balance looks like large sync cost
• ... maybe so does ordinary synchronization overhead!
• And spin-locks may make sync look like useful work
• And ordinary time sharing can confuse things more
• Can get some help from profiling tools

5



Many independent tasks

• Simplest strategy: partition by task index
• What if task costs are inhomogeneous?
• Worse: what if expensive tasks all land on one thread?

• Potential fixes
• Many small tasks, randomly assigned to processors
• Dynamic task assignment

• Issue: what about scheduling overhead?

6



Variations on a theme

How to avoid overhead? Chunks! (Think OpenMP loops)

• Small chunks: good balance, large overhead
• Large chunks: poor balance, low overhead

Variants:

• Fixed chunk size (requires good cost estimates)
• Guided self-scheduling (take ⌈(tasks left)/p⌉ work)
• Tapering (size chunks based on variance)
• Weighted factoring (GSS with heterogeneity)

7



Static dependency and graph partitioning

• Graph G = (V, E) with vertex and edge weights
• Goal: even partition with small edge cut (comm volume)
• Optimal partitioning is NP complete – use heuristics
• Tradeoff quality vs speed
• Good software exists (e.g. METIS)

8



The limits of graph partitioning

What if

• We don’t know task costs?
• We don’t know the communication/dependency pattern?
• These things change over time?

May want dynamic load balancing?

Even in regular case: not every problem looks like an
undirected graph!

9



Dependency graphs

So far: Graphs for dependencies between unknowns.

For dependency between tasks or computations:

• Arrow from A to B means that B depends on A
• Result is a directed acyclic graph (DAG)

10



Example: Longest Common Substring

Goal: Longest sequence of (not necessarily contiguous)
characters common to strings S and T.

Recursive formulation:

LCS[i, j] =

max(LCS[i− 1, j],LCS[j, i− 1]), S[i] ̸= T[j]
1+ LCS[i− 1, j− 1], S[i] = T[j]

Dynamic programming: Form a table of LCS[i, j]

11



Dependency graphs

Can process in any order consistent with dependencies.
Limits to available parallel work early on or late! 12



Dependency graphs

Partition into coarser-grain tasks for locality? 13



Dependency graphs

Dependence between coarse tasks limits parallelism.

14



Alternate perspective

Recall LCS

LCS[i, j] =

max(LCS[i− 1, j],LCS[j, i− 1]), S[i] ̸= T[j]
1+ LCS[i− 1, j− 1], S[i] = T[j]

Two approaches to LCS:

• Solve subproblems from bottom up
• Solve from top down and memoize common subproblems

Parallel question: shared memoization (and synchronize) or
independent memoization (and redundant computation)?

15



Load balancing and task-based parallelism

0

1 1

2 2 2 2

3 3

• Task DAG captures data dependencies
• May be known at outset or dynamically generated
• Topological sort reveals parallelism opportunities

16



Basic parameters

• Task costs
• Do all tasks have equal costs?
• Costs known statically, at creation, at completion?

• Task dependencies
• Can tasks be run in any order?
• If not, when are dependencies known?

• Locality
• Should tasks be co-located to reduce communication?
• When is this information known?

17



Task costs

Easy: equal unit cost tasks (branch-free loops)

Harder: different, known times (sparse MVM)

? ? ? ? ? ? ? ?

Hardest: costs unknown until completed (search)

18



Dependencies

Easy: dependency-free loop (Jacobi sweep)

Harder: tasks have predictable structure (some DAG)

? ? ?

? ?

Hardest: structure is dynamic (search, sparse LU)

19



Locality/communication

When do you communicate?

• Easy: Only at start/end (embarrassingly parallel)
• Harder: In a predictable pattern (elliptic PDE solver)
• Hardest: Unpredictable (discrete event simulation)

20



A spectrum of solutions

How much we can do depends on cost, dependency, locality

• Static scheduling
• Everything known in advance
• Can schedule offline (e.g. graph partitioning)
• Example: Shallow water solver

• Semi-static scheduling
• Everything known at start of step (for example)
• Can use offline ideas (e.g. Kernighan-Lin refinement)
• Example: Particle-based methods

• Dynamic scheduling
• Don’t know what we’re doing until we’ve started
• Have to use online algorithms
• Example: most search problems

21



Search problems

• Different set of strategies from physics sims!
• Usually require dynamic load balance
• Example:

• Optimal VLSI layout
• Robot motion planning
• Game playing
• Speech processing
• Reconstructing phylogeny
• ...

22



Example: Tree search

? ? ?

? ?

• Tree unfolds dynamically during search
• May be common problems on different paths (graph)
• Graph may or may not be explicit in advance

23



Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work
remove node n from queue
if n satisfies goal, return
mark n as searched
add viable unsearched children of n to stack/queue
(Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A∗ (priority queue), ...

24



Simple parallel search

0

0 1 2 3

0 0 0 3

0 0 0 0

Static load balancing:

• Each new task on an idle processor until all have a subtree
• Not very effective without work estimates for subtrees!
• How can we do better?

25



Centralized scheduling

Worker 0 Worker 1

Next?

Worker 2 Worker 3

Idea: obvious parallelization of standard search

• Locks on shared data structure (stack, queue, etc)
• Or might be a manager task

26



Centralized scheduling

Teaser: What could go wrong with this parallel BFS?

Put root in queue
fork
obtain queue lock
while queue has work
remove node n from queue
release queue lock
process n, mark as searched
obtain queue lock
enqueue unsearched children of n

release queue lock
join

27



Centralized scheduling

Teaser: What could go wrong with this parallel BFS?

Put root in queue; workers active = 0
fork
obtain queue lock
while queue has work or workers active > 0
remove node n from queue; workers active ++
release queue lock
process n, mark as searched
obtain queue lock
enqueue unsearched children of n; workers active --

release queue lock
join

28



Centralized task queue

• Called self-scheduling when applied to loops
• Tasks might be range of loop indices
• Assume independent iterations
• Loop body has unpredictable time (or do it statically)

• Pro: dynamic, online scheduling
• Con: centralized, so doesn’t scale
• Con: high overhead if tasks are small

29



Beyond centralized task queue

Worker 0 Worker 1 Worker 2 Worker 3

Yoink! Next?

30



Beyond centralized task queue

Basic distributed task queue idea:

• Each processor works on part of a tree
• When done, get work from a peer
• Or if busy, push work to a peer
• Requires asynch communication

Also goes by work stealing, work crews...

Implemented in OpenMP, Cilk, X10, CUDA, QUARK, SMPss, ...

31



Picking a donor

Could use:

• Asynchronous round-robin
• Global round-robin (keep current donor pointer at proc 0)
• Randomized – optimal with high probability!

32



Diffusion-based balancing

• Problem with random polling: communication cost!
• But not all connections are equal
• Idea: prefer to poll more local neighbors

• Average out load with neighbors =⇒ diffusion!

33



Mixed parallelism

• Today: mostly coarse-grain task parallelism
• Other times: fine-grain data parallelism
• Why not do both? Switched parallelism.

34



Takeaway

• Lots of ideas, not one size fits all!
• Axes: task size, task dependence, communication
• Dynamic tree search is a particularly hard case!
• Fundamental tradeoffs

• Overdecompose (load balance) vs
keep tasks big (overhead, locality)

• Steal work globally (balance) vs
steal from neighbors (comm. overhead)

• Sometimes hard to know when code should stop!

35


