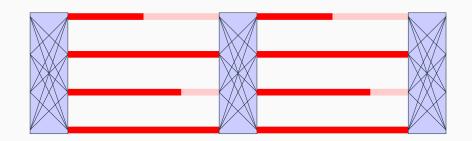
CS 5220: Load Balancing

David Bindel 2017-11-09

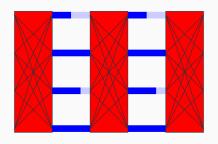
Inefficiencies in parallel code



Poor single processor performance

- Typically in the memory system
- · Saw this in matrix multiply assignment

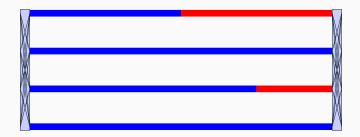
Inefficiencies in parallel code



Overhead for parallelism

- · Thread creation, synchronization, communication
- · Saw this in moshpit and shallow water assignments

Inefficiencies in parallel code



Load imbalance

- · Different amounts of work across processors
- Different speeds / available resources
- Insufficient parallel work
- · All this can change over phases

Where does the time go?

- Load balance looks like large sync cost
- · ... maybe so does ordinary synchronization overhead!
- And spin-locks may make sync look like useful work
- And ordinary time sharing can confuse things more
- Can get some help from profiling tools

Many independent tasks

- · Simplest strategy: partition by task index
 - What if task costs are inhomogeneous?
 - · Worse: what if expensive tasks all land on one thread?
- Potential fixes
 - Many small tasks, randomly assigned to processors
 - Dynamic task assignment
- Issue: what about scheduling overhead?

Variations on a theme

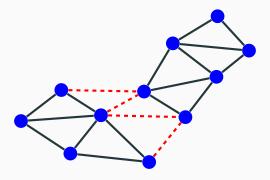
How to avoid overhead? Chunks! (Think OpenMP loops)

- · Small chunks: good balance, large overhead
- · Large chunks: poor balance, low overhead

Variants:

- Fixed chunk size (requires good cost estimates)
- Guided self-scheduling (take [(tasks left)/p] work)
- Tapering (size chunks based on variance)
- Weighted factoring (GSS with heterogeneity)

Static dependency and graph partitioning



- Graph G = (V, E) with vertex and edge weights
- · Goal: even partition with small edge cut (comm volume)
- Optimal partitioning is NP complete use heuristics
- Tradeoff quality vs speed
- · Good software exists (e.g. METIS)

The limits of graph partitioning

What if

- We don't know task costs?
- · We don't know the communication/dependency pattern?
- These things change over time?

May want dynamic load balancing?

Even in regular case: not every problem looks like an undirected graph!

So far: Graphs for dependencies between unknowns.

For dependency between tasks or computations:

- · Arrow from A to B means that B depends on A
- Result is a directed acyclic graph (DAG)

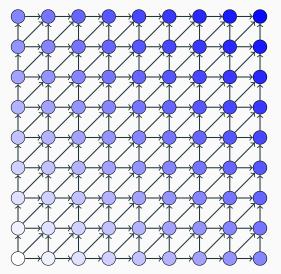
Example: Longest Common Substring

Goal: Longest sequence of (not necessarily contiguous) characters common to strings *S* and *T*.

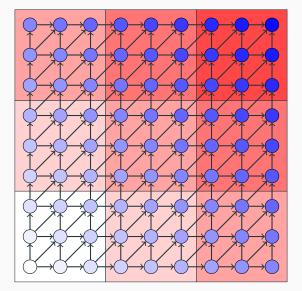
Recursive formulation:

$$LCS[i,j] = \begin{cases} max(LCS[i-1,j], LCS[j,i-1]), & S[i] \neq T[j] \\ 1 + LCS[i-1,j-1], & S[i] = T[j] \end{cases}$$

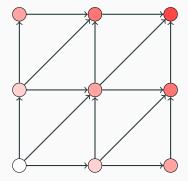
Dynamic programming: Form a table of LCS[i,j]



Can process in any order consistent with dependencies. Limits to available parallel work early on or late!



Partition into coarser-grain tasks for locality?



Dependence between coarse tasks limits parallelism.

Alternate perspective

Recall LCS

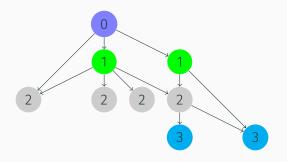
$$LCS[i,j] = \begin{cases} max(LCS[i-1,j], LCS[j,i-1]), & S[i] \neq T[j] \\ 1 + LCS[i-1,j-1], & S[i] = T[j] \end{cases}$$

Two approaches to LCS:

- · Solve subproblems from bottom up
- Solve from top down and memoize common subproblems

Parallel question: shared memoization (and synchronize) or independent memoization (and redundant computation)?

Load balancing and task-based parallelism

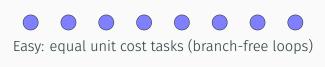


- Task DAG captures data dependencies
- May be known at outset or dynamically generated
- Topological sort reveals parallelism opportunities

Basic parameters

- Task costs
 - Do all tasks have equal costs?
 - · Costs known statically, at creation, at completion?
- Task dependencies
 - Can tasks be run in any order?
 - · If not, when are dependencies known?
- Locality
 - Should tasks be co-located to reduce communication?
 - · When is this information known?

Task costs

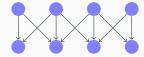


Harder: different, known times (sparse MVM)

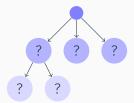
Hardest: costs unknown until completed (search)

Dependencies

Easy: dependency-free loop (Jacobi sweep)



Harder: tasks have predictable structure (some DAG)



Hardest: structure is dynamic (search, sparse LU)

Locality/communication

When do you communicate?

- Easy: Only at start/end (embarrassingly parallel)
- · Harder: In a predictable pattern (elliptic PDE solver)
- Hardest: Unpredictable (discrete event simulation)

A spectrum of solutions

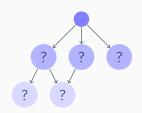
How much we can do depends on cost, dependency, locality

- Static scheduling
 - Everything known in advance
 - · Can schedule offline (e.g. graph partitioning)
 - · Example: Shallow water solver
- Semi-static scheduling
 - Everything known at start of step (for example)
 - · Can use offline ideas (e.g. Kernighan-Lin refinement)
 - Example: Particle-based methods
- · Dynamic scheduling
 - · Don't know what we're doing until we've started
 - · Have to use online algorithms
 - Example: most search problems

Search problems

- · Different set of strategies from physics sims!
- · Usually require dynamic load balance
- · Example:
 - · Optimal VLSI layout
 - · Robot motion planning
 - · Game playing
 - Speech processing
 - Reconstructing phylogeny
 - ..

Example: Tree search



- · Tree unfolds dynamically during search
- May be common problems on different paths (graph)
- · Graph may or may not be explicit in advance

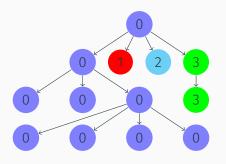
Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work
remove node *n* from queue
if *n* satisfies goal, return
mark *n* as searched
add viable unsearched children of *n* to stack/queue
(Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A* (priority queue), ...

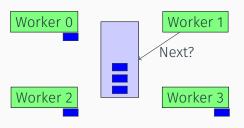
Simple parallel search



Static load balancing:

- · Each new task on an idle processor until all have a subtree
- Not very effective without work estimates for subtrees!
- · How can we do better?

Centralized scheduling



Idea: obvious parallelization of standard search

- · Locks on shared data structure (stack, queue, etc)
- Or might be a manager task

Centralized scheduling

Teaser: What could go wrong with this parallel BFS?

```
Put root in queue
fork
  obtain queue lock
  while queue has work
    remove node n from queue
    release queue lock
    process n, mark as searched
    obtain queue lock
    enqueue unsearched children of n
  release queue lock
ioin
```

Centralized scheduling

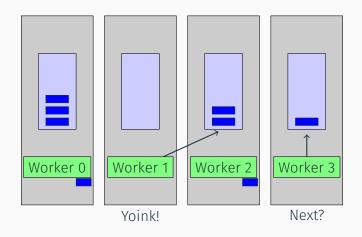
Teaser: What could go wrong with this parallel BFS?

```
Put root in queue; workers active = 0
fork
  obtain queue lock
  while queue has work or workers active > 0
    remove node n from queue; workers active ++
    release queue lock
    process n, mark as searched
    obtain queue lock
    enqueue unsearched children of n; workers active --
  release queue lock
ioin
```

Centralized task queue

- · Called self-scheduling when applied to loops
 - Tasks might be range of loop indices
 - · Assume independent iterations
 - Loop body has unpredictable time (or do it statically)
- · Pro: dynamic, online scheduling
- · Con: centralized, so doesn't scale
- · Con: high overhead if tasks are small

Beyond centralized task queue



Beyond centralized task queue

Basic distributed task queue idea:

- · Each processor works on part of a tree
- · When done, get work from a peer
- · Or if busy, push work to a peer
- Requires asynch communication

Also goes by work stealing, work crews...

Implemented in OpenMP, Cilk, X10, CUDA, QUARK, SMPss, ...

Picking a donor

Could use:

- · Asynchronous round-robin
- · Global round-robin (keep current donor pointer at proc 0)
- · Randomized optimal with high probability!

Diffusion-based balancing

- Problem with random polling: communication cost!
 - · But not all connections are equal
 - · Idea: prefer to poll more local neighbors
- \cdot Average out load with neighbors \implies diffusion!

Mixed parallelism

- · Today: mostly coarse-grain task parallelism
- · Other times: fine-grain data parallelism
- · Why not do both? Switched parallelism.

Takeaway

- · Lots of ideas, not one size fits all!
- · Axes: task size, task dependence, communication
- · Dynamic tree search is a particularly hard case!
- · Fundamental tradeoffs
 - Overdecompose (load balance) vs keep tasks big (overhead, locality)
 - Steal work globally (balance) vs steal from neighbors (comm. overhead)
- · Sometimes hard to know when code should stop!