CS 5220: More Sparse LA

David Bindel
2017-10-26

Reminder: Conjugate Gradients

What if we only know how to multiply by A?
About all you can do is keep multiplying!

Kr(A, b) = span {b,Ab,Azb, .. ,A’Mb} .

Gives surprisingly useful information!

If Ais symmetric and positive definite, x = A~'b minimizes

P(x) = %XTAX —x'b

Vo(x) = Ax — b.

Idea: Minimize ¢(x) over Kr(A,b).
Basis for the method of conjugate gradients

Convergence of CG

- KSPs are not stationary (no constant fixed-point iteration)

- Convergence is surprisingly subtle!
- CG convergence upper bound via condition number

- Large condition number iff form ¢(x) has long narrow bowl
- Usually happens for Poisson and related problems

- Preconditioned problem M~'Ax = M~'b converges faster?

- Whence M?
- From a stationary method?
- From a simpler/coarser discretization?
- From approximate factorization?

PCG

Compute r{® = b — Ax
fori=1,2,...
solve Mz(=1) = ((i=1)
pi_q = (ri=M)TZli=1)
ifi== Parallel work:
p() = (0 - Solve with M
else - Product with A

Bi—1 = pi—1/pi-2
pl(i) _ Z(il_1) Jr’ﬁmp(’q) - Dot products

endif " AXDYS
g = Ap® Overlap comm/comp.
a; = pi_1/(pV)7q")
X0 = (=1 4 ;D)
r() = (=1 — ;g0
end N

PCG bottlenecks

Key: fast solve with M, product with A

- Some preconditioners parallelize better!
(Jacobi vs Gauss-Seidel)

- Balance speed with performance.
- Speed for set up of M?
- Speed to apply M after setup?

- Cheaper to do two multiplies/solves at once...
- Can't exploit in obvious way — lose stability
- Variants allow multiple products — Hoemmen'’s thesis

- Lots of fiddling possible with M; what about matvec with A?

Thinking on (basic) CG convergence

)
®
O
O
O
O

Consider 2D Poisson with 5-point stencil on an n x n mesh.

- Information moves one grid cell per matvec.
- Cost per matvec is O(n?).
- At least O(n?) work to get information across mesh!

CG convergence: a counting approach

- Time to converge > time to propagate info across mesh
- For a 2D mesh: O(n) matvecs, O(n®) = O(N3/2) cost

- For a 3D mesh: 0O(n) matvecs, O(n*) = O(N*/3) cost

- “Long” meshes yield slow convergence

- 3D beats 2D because everything is closer!

- Advice: sparse direct for 2D, CG for 3D.
- Better advice: use a preconditioner!

CG convergence: an eigenvalue approach

Define the condition number for k(L) s.p.d:

. /\max(l-)
B)\min(L)

Describes how elongated the level surfaces of ¢ are.

r(L)

- For Poisson, k(L) = O(h—?)
- CG steps to reduce error by 1/2 = O(y/k) = O(h™").

Similar back-of-the-envelope estimates for some other PDEs.
But these are not always that useful... can be pessimistic if
there are only a few extreme eigenvalues.

CG convergence: a frequency-domain approach

T i mmma
"
L m
= t s
. z
= 40
T
= m
= m| %5/
& i
L i Il 20
B |
LEH 25
EEE 5
L BEE | 20-
o m|
o = |
151 B I 15
o
t
i
oS = & Al
i mEmE—
=
n ! o : i !]
o 5 10 15 20 25 a0 a5 20 5 50 o 10 15 20 25 30 E3 a0 5 50

Error e, after k steps of CG gets smoother!

Choosing preconditioners for 2D Poisson

- CG already handles high-frequency error

- Want something to deal with lower frequency!
- Jacobi useless

- Doesn't even change Krylov subspace!
- Better idea: block Jacobi?

- Q: How should things split up?
- A: Minimize blocks across domain.
- Compatible with minimizing communication!

10

Restrictive Additive Schwartz (RAS)

Restrictive Additive Schwartz (RAS)

- Get ghost cell data

- Solve everything local (including neighbor data)
- Update local values for next step

- Default strategy in PETSc

12

Multilevel Ideas

- RAS propogates information by one processor per step

- For scalability, still need to get around this!
- Basic idea: use multiple grids

- Fine grid gives lots of work, kills high-freq error
- Coarse grid cheaply gets info across mesh, kills low freq

More on this another time.

13

CG performance

Two ways to get better performance from CG:

1. Better preconditioner

- Improves asymptotic complexity?
- ... but application dependent

2. Tuned implementation

- Improves constant in big-O
- ... but application independent?

Benchmark idea (?): no preconditioner, just tune.

14

Tuning PCG

Compute r(® = b — Ax
fori=1,2,...
solve Mz(i=1) = ((i=1)
pi_g = (r=M)7z0=D
ifi ==
p() = Z0)
else
Bi=rpia/pia
p() =Z0=D ¢ g_.p(=" . Overlap comm, comp?
endif
i) = ppth)
a; = pi_1/(pV)7q")
x0) = x(=1) 4 ;p0)
) = (-1 _ ,q0)
end 15

- Most work in A, M

- Vector ops synchronize

Tuning PCG

Compute r(® = b — Ax
p—q = 0;ﬁ71 = 0;0471 =0

s=L""10
po=S's Splitz=M""rinto s, w;
fori=0,1,2,... Overlap
-7 .
wi=1L""s - plq; with x update
pi = Wi+ Bi_1pi— - sTs with w; eval
9 = Api - Computing p;, g,
v = pla; S
o B ?
Xi = Xi_1 + j_1Pi_1 Pipeline rj, s
a;j = pi/7i - Pipeline p;, w;?
ligr =T —aq;
S = L4 Parallel Numerical LA,
Pia1=S's Demmel, Heath, van der Vorst

Check convergence (||riq4|]) 1

.

Tuning PCG

Can also tune

- Preconditioner solve (hooray!)
- Matrix multiply

- Represented implicitly (regular grids)
- Or explicitly (e.g. compressed sparse column)

Or further rearrange algorithm (Hoemmen, Demmel).

Tuning sparse matvec

- Sparse matrix blocking and reordering (Im, Vuduc, Yelick)

- Packages: Sparsity (Im), OSKI (Vuduc)
- Available as PETSc extension

- Optimizing stencil operations (Datta)

Reminder: Compressed sparse row storage

Adata
6|4(5(1|6]|*|col

[9 [1] ptr

1 for i = 1:n
2 y[il = o;

3 for jj = ptr[i] to ptr[i+1]-1
4 y[i] += A[jjI*x[collj1];

5 end

end

Problem: y[i1] += A[jj]*x[colljl];

19

Memory traffic in CSR multiply

Memory access patterns:

- Elements of y accessed sequentially
- Elements of A accessed sequentially

- Access to x are all over!

Can help by switching to block CSR.
Switching to single precision, short indices can help memory
traffic, too!

20

Parallelizing matvec

- Each processor gets a piece
- Many partitioning strategies

- |dea: re-order so one of these strategies is “good”

21

Reordering for matvec

SpMV performance goals:

- Balance load?
- Balance storage?
+ Minimize communication?

- Good cache re-use?
Also reorder for

- Stability of Gauss elimination,
- Fill reduction in Gaussian elimination,

- Improved performance of preconditioners...

22

Reminder: Sparsity and partitioning

0—23B—s—5

Matrix Graph

Want to partition sparse graphs so that

- Subgraphs are same size (load balance)

- Cut size is minimal (minimize communication)

Matrices that are “almost” diagonal are good?

23

Reordering for bandedness

O

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

%0 90

100 100
0 10 20 3 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
nz = 460 nz = 460

Natural order RCM reordering
Reverse Cuthill-McKee

- Select “peripheral” vertex v
- Order according to breadth first search from v

- Reverse ordering "

From iterative to direct

- RCM ordering is great for SpMV
- But isn’t narrow banding good for solvers, too?

- LU takes O(nb?) where b is bandwidth.
- Great if there's an ordering where b is small!

25

Skylines and profiles

- Profile solvers generalize band solvers
- Skyline storage for storing lower triangle: for each row |,

- Start and end of storage for nonzeros in row.
- Contiguous nonzero list up to main diagonal.

- In each column, first nonzero defines a profile.
- All fill-in confined to profile.
- RCM is again a good ordering.

26

Beyond bandedness

- Bandedness only takes us so far
- Minimum bandwidth for 2D model problem? 3D?
- Skyline only gets us so much farther

- But more general solvers have similar structure

- Ordering (minimize fill)

- Symbolic factorization (where will fill be?)
- Numerical factorization (pivoting?)

- ... and triangular solves

27

Reminder: Matrices to graphs

* Aj # 0 means there is an edge between i andj
- Ignore self-loops and weights for the moment

- Symmetric matrices correspond to undirected graphs

28

Troublesome Trees

|_NONOROR®) ®OO0OO
O @ @000
o O 00000
O @ ONONON NO
O o SjoJo)oX

WV

One step of Gaussian elimination completely fills this matrix!

29

O

Full Gaussian elimination generates no fill in this matrix!

@
O

O
O
@ O
O
O000 @

Jo

30

Graphic Elimination

Consider first steps of GE

A(2:end,1)/A(1,1);
A(2:end,2:end)-...
A(2:end,1)*A(1,2:end);

1 A(2:end,1)
> A(2:end,2:end)

Nonzero in the outer product at (i,j) if A(i, 1) and A(j,1)
both nonzero — that is, if i and j are both connected to 1.

General: Eliminate variable, connect remaining neighbors.

31

Terrific Trees Redux

O

O

Order leaves to root =
on eliminating i, parent of i is only remaining neighbor. -

Nested Dissection

- ldea: Think of block tree structures.
- Eliminate block trees from bottom up.
- Can recursively partition at leaves.
- Rough cost estimate: how much just to factor dense Schur
complements associated with separators?
- Notice graph partitioning appears again!
- And again we want small separators! 3

Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)

- ND gives optimal complexity in exact arithmetic
(George 73, Hoffman/Martin/Rose)

- 2D: O(N log N) memory, O(N*/?) flops
- 3D: O(N“/3) memory, O(N?) flops

34

- Locally greedy strategy
- Want to minimize upper bound on fill-in
- Fill < (degree in remaining graph)?
- At each step
- Eliminate vertex with smallest degree
- Update degrees of neighbors
- Problem: Expensive to implement!

- But better varients via quotient graphs
- Variants often used in practice

35

Elimination Tree

- Variables (columns) are nodes in trees
- ja descendant of R if eliminating j updates R

- Can eliminate disjoint subtrees in parallel!

36

Cache locality

Basic idea: exploit “supernodal” (dense) structures in factor

- e.g. arising from elimination of separator Schur
complements in ND

- Other alternatives exist (multifrontal solvers)

37

Pivoting is painful, particularly in distributed memory!

- Cholesky — no need to pivot!
- Threshold pivoting — pivot when things look dangerous
- Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals

38

Direct to iterative

Can improve solution by iterative refinement:

PAQ =~ LU
Xo ~QUT'L='Pb
ro =b — Axg
X1 Xo 4+ QUT'L™Pry

Looks like approximate Newton on F(x) = Ax — b = 0.
This is just a stationary iterative method!
Nonstationary methods work, too.

39

Variations on a theme

If we're willing to sacrifice some on factorization,

- Single precision factor + double precision refinement?
- Sloppy factorizations (marginal stability) + refinement?

- Modify m small pivots as they're encountered (low rank
updates), fix with m steps of a Krylov solver?

40

