
CS 5220: Heterogeneity and accelerators

David Bindel
2017-10-03

1

Reminder: Totient cluster structure

Consider:

• Each core has vector parallelism
• Each chip has six cores, shares memory with others
• Each box has two chips, shares memory
• Each box has two Xeon Phi accelerators
• Eight instructional nodes, communicate via Ethernet

Common layout (more nodes and better networks at high end)

2

Accelerator devices

• NVidia GPUs
• Intel Xeon Phi (aka MIC)
• AMD Radeon Pro
• Google Tensor Processing Units (TPUs)
• Arria (Intel) and Altera FPGAs
• Lake Crest, Knights Mill, etc?

3

General accelerator scheme

If you were plowing a field, which would you rather
use: Two strong oxen or 1024 chickens?

— Seymour Cray

• Host computer
• General purpose
• Usually multi-core

• Accelerator
• Specialized for particular workloads
• Often many specialized cores (many-core)
• May have a non-x86 ISA, needs different compilers
• More “exotic” HW support (half precision, wide vecs, etc)
• Often has independent memory

4

Some historical perspective

• 1970s – early 1990s: vector supercomputers
• But games pay more than science!

• Mid-late 90s: SIMD vectors in CPUs (for graphics)
• Also 90s: Special-purpose GPUs
• Early 2000s: Programmable GPUs, rise of GPGPU

• And the pendulum swings
• 2007: NVidia Tesla + first version of NVidia CUDA
• 2010: Knight’s Ferry
• 2012-13: Knight’s Landing (first commercial Xeon Phi)
• Today: mostly NVidia, Intel trailing, AMD a ways back

• NB: Knight’s Landing Xeon Phi can operate independently!

• More recent accelerators target deep learning

5

Accelerator options

• NVidia GPUs
• Amazon EC2, Google GCE, MS Azure
• Summit (ORNL)
• Sierra (LLNL)

• Intel Xeon Phi
• Totient cluster!
• Tianhe-2
• TACC Stampede
• Aurora (Argonne)

6

Same old song...

• For performance, we need:
• Stern warnings against magical thinking
• Enough about HW to reason about performance gotchas
• Careful attention to memory issues
• Pointers to appropriate programming models

• What’s different?
• Many more cores/threads
• Lots of data parallelism
• New? NVidia lore harkens to Cray vector days!

7

Programming models

• Call a library!
• This is often the fastest way to faster code
• Remember trying to beat BLAS in P1?

• CUDA (NVidia only)
• OpenCL (clunkier, works with more)
• OpenACC
• OpenMP
• Novel languages (Simit, Julia, ...)

8

https://developer.nvidia.com/gpu-accelerated-libraries

Totient Phi

Xeon Phi 5110P

• Came out late 2012 (now end-of-life)
• 60 cores (modified Pentium)
• 4 way hyperthreading / 240 hardware threads
• AVX512 support (wide vector units)
• Base frequency of 1.05 GHz
• Ring network on chip
• 32K L1 data/instruction cache per core
• 30 MB L2 (512K/core) and 8 GB RAM

Program with OpenMP + directives, OpenCL, Cilk/Cilk+, libraries

9

https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core

Phi programming

• Knight’s Landing – maybe just ssh in
• Offload mode slides adapted from TACC talk

10

https://portal.tacc.utexas.edu/documents/13601/901837/offload_slides_DJ2013-3.pdf

Easy perf (Automatic Offloading)

Supposing foo uses BLAS for performance:
1 # In Makefile
2 icc -qopenmp -mkl foo.c -o foo.x
3

4 # In PBS script
5 export MKL_MIC_ENABLE=1
6 export OMP_NUM_THREADS=12
7 export MIC_OMP_NUM_THREADS=240
8 ./foo.x

Actually divides work across host and MIC

11

Compiler-assisted offload: Hello World

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main()
5 {
6 int nprocs;
7

8 #pragma offload target(mic)
9 nprocs = omp_get_num_procs(); // On MIC
10

11 printf("nprocs = %d\n", nprocs); // On host
12 return 0;
13 }

Can have OpenMP on either host or MIC.

12

Compiler-assisted offload: Hello World

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main()
5 {
6 int nprocs;
7

8 #pragma offload target(mic:0)
9 nprocs = omp_get_num_procs(); // On MIC 0 (vs MIC 1)
10

11 printf("nprocs = %d\n", nprocs); // On host
12 return 0;
13 }

13

Compiler-assisted offload

Always generate host code, generate code for MIC in

• offload regions
• Functions marked with __declspec(target(mic))

Can also mark global variables with
__declspec(target(mic))

14

Offload off-stage

Execution behind the scenes:

• Detect MICs
• Allocate/associate MIC memory
• Transfer data to MIC
• Execute on MIC
• Transfer data from MIC
• Deallocate on MIC

Can control with clauses

15

Data transfer

• in, out, inout clauses: declare how variables transfer
• alloc_if, free_if: manage allocation for associated
dynamic arrays on host and accelerator

16

Compiler-assisted offload

1 __declspec(target(mic))
2 void something_fancy(int n, double* x) {...}
3

4 int main()
5 {
6 int n = 100;
7 double* x = (double*) memalign(64, n*sizeof(double));
8 #pragma offload mic \
9 inout(x : length(n) alloc_if(1) free_if(1))
10 something_fancy(n, x);
11 // Do something with x on host
12 free(x);
13 return 0;
14 }

17

Asynchronous execution

1 int n = 123;
2 #pragma offload target(mic) signal(&n)
3 act_very_slowly();
4 do_something_on_host();
5 #pragma mic offload_wait target(mic) wait(&n)

18

Desiderata

• Lots of parallel work
• Vectorized, OpenMP, etc – both host and MIC

• Not too much data transfer
• It’s expensive!
• Re-use data transfers to MIC if possible

Writing “modern” code tends to be good for both sides...

19

What about GPUs?

Lots of good references out there:

• Programming Massively Parallel Processors (Kirk and Hwu)
– available online via Cornell library subscription (Safari)

• CUDA C Programming Guide
• CUDA C Best Practices Guide
• Oxford CUDA short course

Lots of details! But basic ideas constant: regular computation,
expose parallelism, exploit locality, minimize memory traffic.

20

http://proquest.safaribooksonline.com/book/software-engineering-and-development/9780124159921
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://people.maths.ox.ac.uk/gilesm/cuda/

Basic architecture (NVidia GPUs)

• Array of Streaming Multiprocessors (SMs)
• Single Instruction Multiple Thread (SIMT)

• Operate with warp of 32 threads
• Each thread execs same instructions at once
• Some may be inactive (for conditional exec)

• Exec a warp at a time (want lots of parallel work!)
• Organize threads into logical grids of blocks
• Several types of device memory

21

How to program?

Call a library!

• MAGMA for doing NLA
• cuBLAS, cuFFT, etc otherwise

But sometimes you need a little lower level.

22

http://icl.cs.utk.edu/magma/

NVidia CUDA

Compute Unified Device Architecture. Three basic ideas:

• Hierarchy of thread groups
• Shared memories
• Barrier synchronization

23

Threads and kernels

Idea:

• Define kernel that runs on GPU
• Exec kernel on N parallel threads
• Different work according to thread index

24

Hello world

1 __global__
2 void vecAdd(float* A, float* B, float* C) {
3 int i = threadIdx.x;
4 C[i] = A[i] + B[i];
5 }
6

7 int main()
8 {
9 // ...
10 // Execute with N threads
11 vecAdd<<1,N>>(A, B, C);
12 // ...
13 }

25

Hello world

• Declare __global__ to run on device
• __device__ for call/exec on device
• __host__ for all on host (or don’t annotate)

• Call is kernel<<nBlk,nThread>>(args)
• Blocks/threads in 1-3D logical index spaces

• Threads form blocks, blocks form grids
• IDs are blockIdx and threadIdx structs
• gridDim gives blocks/grid
• blockDim gives threads/block
• Each struct has x, y, z fields
• Under the hood: 1D space
• At most 1024 threads per block

26

Hello world

1 __global__
2 void vecAdd(float* A, float* B, float* C, int N) {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 if (i < N) C[i] = A[i] + B[i];
5 }
6

7 int main()
8 {
9 // ...
10 // Execute with N threads
11 vecAdd<<1,N>>(A, B, C, N);
12 // ...
13 }

27

Where is the data?

Explicitly manage device data and transfers:
1 cudaMalloc((void**)&d_A, size);
2 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
3 // Do something on device
4 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
5 cudaFree(d_A);

... and we have to malloc/free corresponding device data.

28

Shared memory and barriers

Device has several types of memory

• Per-thread: registers, local memory
• Per-block: shared memory (__shared__)
• Per-grid: global memory, constant memory

Synchronize access to shared/global memory with
__synchthreads() (barrier)

29

And so forth

• Other memory types (texture, surface)
• Asynchronous execution
• Streams and events
• ... and the programming guide is 300 pages!

30

So now what?

So far we have seen

• Two accelerator HW platforms
• Two programming models
• Same old concerns with lots of new details

Should be asking

• Is there a better way than low-level mucking about?
• What if I want to use this in a larger code?

Both great questions! Let’s pick them up next time.

31

