
CS 5220: Shared memory programming

David Bindel
2017-09-28

1



OpenMP: Open spec for MultiProcessing

• Standard API for multi-threaded code
• Only a spec — multiple implementations
• Lightweight syntax
• C or Fortran (with appropriate compiler support)

• High level:
• Preprocessor/compiler directives (80%)
• Library calls (19%)
• Environment variables (1%)

• Basic syntax: #pragma omp construct [clause ...]
• Usually affects structured block (one way in/out)
• OK to have exit() in such a block

2



Last time

• Environmental inquiries with omp_get_* functions
• Creating parallel regions with #pragma omp parallel
• Annotations for variables (shared, private, reduction)
• Synchronization via critical sections, atomic ops, barriers
• Today: Work sharing, tasks, and some examples

3



Work sharing

Work sharing constructs split work across a team

• Parallel for: split by loop iterations
• sections: non-iterative tasks
• single: only one thread executes (synchronized)
• master: master executes, others skip (no sync)

4



Parallel iteration

Idea: Map independent iterations onto different threads
1 #pragma omp parallel for
2 for (int i = 0; i < N; ++i)
3 a[i] += b[i];
4

5 #pragma omp parallel
6 {
7 // Stuff can go here...
8 #pragma omp for
9 for (int i = 0; i < N; ++i)
10 a[i] += b[i];
11 }

Implicit barrier at end of loop (unless nowait clause)

5



Parallel iteration

The iteration can also go across a higher-dim index set
1 #pragma omp parallel for collapse(2)
2 for (int i = 0; i < N; ++i)
3 for (int j = 0; j < M; ++j)
4 a[i*M+j] = foo(i,j);

6



Restrictions

• for loop must be in “canonical form”
• Loop var is an integer, pointer, random access iterator (C++)
• Test compares loop var to loop-invariant expression
• Increment or decrement by a loop-invariant expression
• No code between loop starts in collapse set
• Needed to split iteration space (maybe in advance)

• Iterations should be independent
• Compiler may not stop you if you screw this up!

• Iterations may be assigned out-of-order on one thread!
• Unless the loop is declared monotonic

7



Reduction loops

How might we parallelize something like this?
1 double sum = 0;
2 for (int i = 0; i < N; ++i)
3 sum += big_hairy_computation(i);

8



Reduction loops

How might we parallelize something like this?
1 double sum = 0;
2 #pragma omp parallel for reduction(+:sum)
3 for (int i = 0; i < N; ++i)
4 sum = big_hairy_computation(i);

9



Ordered

OK, what about something like this?
1 for (int i = 0; i < N; ++i) {
2 int result = big_hairy_computation(i);
3 add_to_queue(q, result);
4 }

Work is mostly independent, but not wholly.

10



Ordered

Solution: ordered directive in loop with ordered clause
1 #pragma omp parallel for ordered
2 for (int i = 0; i < N; ++i) {
3 int result = big_hairy_computation(i);
4 #pragma ordered
5 add_to_queue(q, result);
6 }

Ensures the ordered code executes in loop order.

11



SIMD loops

As of OpenMP 4.0:
1 #pragma omp parallel simd reduction(+:sum) aligned(a:64)
2 for (int i = 0; i < N; ++i) {
3 a[i] = b[i] * c[i];
4 sum = sum + a[i];
5 }

Can also declare vectorized functions:
1 #pragma omp declare simd
2 float myfunc(float a, float b, float c)
3 {
4 return a*b + c;
5 }

12



Other parallel work divisions

• sections: like cobegin/coend
• single: do only in one thread (e.g. I/O)
• master: do only in master thread; others skip

13



Sections

1 #pragma omp parallel
2 {
3 #pragma omp sections nowait
4 {
5 #pragma omp section
6 do_something();
7

8 #pragma omp section
9 and_something_else();
10

11 #pragma omp section
12 and_this_too();
13 // No implicit barrier here
14 }
15 // Implicit barrier here
16 }

sections nowait to kill barrier. 14



Task-based parallelism

• Work-sharing so far is rather limited
• Work cannot be produced/consumed dynamically
• Fine for data parallel array processing...
• ... but what about tree walks and such?

• Alternate approach (OpenMP 3.0+): Tasks

15



Tasks

Task involves:

• Task construct: task directive plus structured block
• Task: Task construct + data

Tasks are handled by run time, complete at barriers or
taskwait.

16



Example: List traversal

1 #pragma omp parallel
2 {
3 #pragma omp single nowait
4 {
5 for (link_t* link = head; link; link = link->next)
6 #pragma omp task firstprivate(link)
7 process(link);
8 }
9 // Implicit barrier
10 }

One thread generates tasks, others execute them.

17



Example: Tree traversal

1 int tree_max(node_t* n)
2 {
3 int lmax, rmax;
4 if (n->is_leaf)
5 return n->value;
6

7 #pragma omp task shared(lmax)
8 lmax = tree_max(n->l);
9 #pragma omp task shared(rmax)
10 rmax = tree_max(n->l);
11 #pragma omp taskwait
12

13 return max(lmax, rmax);
14 }

The taskwait waits for all child tasks.
18



Task dependencies

What happens if one task produces what another needs?
1 #pragma omp task depend(out:x)
2 x = foo();
3 #pragma omp task depend(in:x)
4 y = bar(x);

19



Topics not addressed

• Low-level synchronization (locks, flush)
• OpenMP 4.x constructs for accelerator interaction
• A variety of more specialized clauses

See http://www.openmp.org/

20

http://www.openmp.org/


Some examples (at board)

What are different ways to organize these:

• Dot product?
• Monte Carlo computation with adaptive termination?
• Wave equation time stepper?

21


