
CS 5220: Optimization basics

David Bindel
2017-08-31

1

Reminder: Modern processors

• Modern CPUs are
• Wide: start / retire multiple instructions per cycle
• Pipelined: overlap instruction executions
• Out-of-order: dynamically schedule instructions

• Lots of opportunities for instruction-level parallelism (ILP)
• Complicated! Want the compiler to handle the details
• Implication: we should give the compiler

• Good instruction mixes
• Independent operations
• Vectorizable operations

2

Reminder: Memory systems

• Memory access are expensive!
• Flop time≪ bandwidth−1 ≪ latency
• Caches provide intermediate cost/capacity points
• Cache benefits from

• Spatial locality (regular local access)
• Temporal locality (small working sets)

3

Goal: (Trans)portable performance

• Attention to detail has orders-of-magnitude impact
• Different systems = different micro-architectures, caches
• Want (trans)portable performance across HW
• Need principles for high-perf code along with tricks

4

Basic principles

• Think before you write
• Time before you tune
• Stand on the shoulders of giants
• Help your tools help you
• Tune your data structures

5

Think before you write

6

Premature optimization

We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil.

– Don Knuth

7

Premature optimization

Wrong reading: “Performance doesn’t matter”

We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil.

– Don Knuth

8

Premature optimization

What he actually said (with my emphasis)

We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil.

– Don Knuth

• Don’t forget the big efficiencies!
• Don’t forget the 3%!
• Your code is not premature forever!

9

Don’t sweat the small stuff

• Speed-up from tuning ϵ of code < (1− ϵ)−1 ≈ 1+ ϵ

• OK to write high-level stuff in Matlab or Python
• OK if configuration file reader is un-tuned
• OK if O(n2) prelude to O(n3) algorithm is not hyper-tuned?

10

Lay-of-the-land thinking

1 for (i = 0; i < n; ++i)
2 for (j = 0; j < n; ++j)
3 for (k = 0; k < n; ++k)
4 C[i+j*n] += A[i+k*n] * B[k+j*n];

• What are the “big computations” in my code?
• What are the natural algorithmic variants?

• Vary loop orders? Different interpretations!
• Lower complexity algorithm (Strassen?)

• Should I rule out some options in advance?
• How can I code so it is easy to experiment?

11

How big is n?

Typical analysis: time is O(f(n))

• Meaning: ∃C,N : ∀n ≥ N, Tn ≤ Cf(n).
• Says nothing about constant factors: O(10n) = O(n)
• Ignores lower order term: O(n3 + 1000n2) = O(n3)
• Behavior at small n may not match behavior at large n!

Beware asymptotic complexity arguments about small-n codes!

12

Avoid work

1 bool any_negative1(int* x, int n)
2 {
3 bool result = false;
4 for (int i = 0; i < n; ++i)
5 result = (result || x[i] < 0);
6 return result;
7 }
8

9 bool any_negative2(int* x, int n)
10 {
11 for (int i = 0; i < n; ++i)
12 if (x[i] < 0)
13 return false;
14 return true;
15 }

13

Be cheap

Fast enough, right enough =⇒
Approximate when you can get away with it.

14

Do more with less (data)

Want lots of work relative to data loads:

• Keep data compact to fit in cache
• Use short data types for better vectorization
• But be aware of tradeoffs!

• For integers: may want 64-bit ints sometimes!
• For floating-point: will discuss in detail in other lectures

15

Remember the I/O!

Example: Explicit PDE time stepper on 2562 mesh

• 0.25 MB per frame (three fit in L3 cache)
• Constant work per element (a few flops)
• Time to write to disk ≈ 5 ms

If I write once every 100 frames, how much time is I/O?

16

Time before you tune

17

Hot spots and bottlenecks

• Often a little bit of code takes most of the time
• Usually called a “hot spot” or bottleneck
• Goal: Find and eliminate

• Cute coinage: “de-slugging”

18

Practical timing

Need to worry about:

• System timer resolutions
• Wall-clock time vs CPU time
• Size of data collected vs how informative it is
• Cross-interference with other tasks
• Cache warm-start on repeated timings
• Overlooked issues from too-small timings

19

Manual instrumentation

Basic picture:

• Identify stretch of code to be timed
• Run it several times with “characteristic” data
• Accumulate the total time spent

Caveats: Effects from repetition, “characteristic” data

20

Manual instrumentation

• Hard to get portable high-resolution wall-clock time!
• Solution: omp_get_wtime()
• Requires OpenMP support (still not CLang)

21

Types of profiling tools

• Sampling vs instrumenting
• Sampling: Interrupt every tprofile cycles
• Instrumenting: Rewrite code to insert timers
• Instrument at binary or source level

• Function level or line-by-line
• Function: Inlining can cause mis-attribution
• Line-by-line: Usually requires debugging symbols (-g)

• Context information?
• Distinguish full call stack or not?

• Time full run, or just part?

22

Hardware counters

• Counters track cache misses, instruction counts, etc
• Present on most modern chips
• May require significant permissions to access...

23

Automated analysis tools

• Examples: MAQAO and IACA
• Symbolic execution of model of a code segment
• Usually only practical for short segments
• But can give detailed feedback on (assembly) quality

24

Shoulders of giants

25

What makes a good kernel?

Computational kernels are

• Small and simple to describe
• General building blocks (amortize tuning work)
• Ideally high arithmetic intensity

• Arithmetic intensity = flops/byte
• Amortizes memory costs

26

Case study: BLAS

Basic Linear Algebra Subroutines

• Level 1: O(n) work on O(n) data
• Level 2: O(n2) work on O(n2) data
• Level 3: O(n3) work on O(n2) data

Level 3 BLAS are key for high-perf transportable LA.

27

Other common kernels

• Apply sparse matrix (or sparse matrix powers)
• Compute an FFT
• Sort a list

28

Kernel trade-offs

• Critical to get properly tuned kernels
• Kernel interface is consistent across HW types
• Kernel implementation varies according to arch details

• General kernels may leave performance on the table
• Ex: General matrix-matrix multiply for structured matrices

• Overheads may be an issue for small n cases
• Ex: Usefulness of batched BLAS extensions

• But: Ideally, someone else writes the kernel!
• Or it may be automatically tuned

29

Help your tools help you

30

What can your compiler do for you?

In decreasing order of effectiveness:

• Local optimization
• Especially restricted to a “basic block”
• More generally, in “simple” functions

• Loop optimizations
• Global (cross-function) optimizations

31

Local optimizations

• Register allocation: compiler > human
• Instruction scheduling: compiler > human
• Branch joins and jump elim: compiler > human?
• Constant folding and propogation: humans OK
• Common subexpression elimination: humans OK
• Algebraic reductions: humans definitely help

32

Loop optimizations

Mostly leave these to modern compilers

• Loop invariant code motion
• Loop unrolling
• Loop fusion
• Software pipelining
• Vectorization
• Induction variable substitution

33

Obstacles for the compiler

• Long dependency chains
• Excessive branching
• Pointer aliasing
• Complex loop logic
• Cross-module optimization
• Function pointers and virtual functions
• Unexpected FP costs
• Missed algebraic reductions
• Lack of instruction diversity

Let’s look at a few...

34

Ex: Long dependency chains

Sometimes these can be decoupled (e.g. reduction loops)
1 // Version 0
2 float s = 0;
3 for (int i = 0; i < n; ++i)
4 s += x[i];

Apparent linear dependency chain. Compilers might handle
this, but let’s try ourselves...

35

Ex: Long dependency chains

Key: Break up chains to expose parallel opportunities
1 // Version 1
2 float s[4] = {0, 0, 0, 0};
3 int i;
4

5 // Sum start of list in four independent sub-sums
6 for (i = 0; i < n-3; i += 4)
7 for (int j = 0; j < 4; ++j)
8 s[j] += x[i+j];
9

10 // Combine sub-sums and handle trailing elements
11 float s = (s[0]+s[1]) + (s[2]+s[3]);
12 for (; i < n; ++i)
13 s += x[i];

36

Ex: Pointer aliasing

Why can this not vectorize easily?
1 void add_vecs(int n, double* result, double* a, double* b)
2 {
3 for (int i = 0; i < n; ++i)
4 result[i] = a[i] + b[i];
5 }

Q: What if result overlaps a or b?

37

Ex: Pointer aliasing

C99: Use restrict keyword
1 void add_vecs(int n, double* restrict result,
2 double* restrict a, double* restrict b);

Implicit promise: these point to different things in memory.

Fortran forbids aliasing — part of why naive Fortran speed
beats naive C speed!

38

Ex: “Black box” function calls

Compiler must assume arbitrary wackiness from “black box”
function calls

1 double foo(double* restrict x)
2 {
3 double y = *x; // Load x once
4 bar(); // Assume bar is a 'black box' fn
5 y += *x; // Must reload x
6 return y;
7 }

39

Ex: Floating point issues

Several possible optimizations available:

• Use different precisions
• Use more/less accurate special function routines
• Underflow is flush-to-zero or gradual

Problem: This changes semantics!

• A daring compiler will pretend floats are reals and hope
• This will break some of my codes!
• Human intervention is indicated

40

Optimization flags

• -O[0123] (no optimization – aggressive optimization)
• -O2 is usually the default
• -O3 is useful, but might break FP codes (for example)

• Architecture targets
• Usually a “native” mode targets current architecture
• Not always the right choice (e.g. consider Totient
head/compute)

• Specialized optimization flags
• Turn on/off specific optimization features
• Often the basic -Ox has reasonable defaults

41

Auto-vectorization and compiler reports

• Good compilers try to vectorize for you
• Intel is pretty good at this
• GCC / CLang are OK, not as strong

• Can get reports about what prevents vectorization
• Not necessarily by default!
• Helps a lot for tuning

42

Profile-guided optimization

Basic workflow:

• Compile code with optimizations
• Run in a profiler
• Compile again, provide profiler results

Helps compiler optimize branches based on observations.

43

Data layout matters

44

“Speed-of-light” analysis

For compulsory misses to load cache:

Tdata (s) ≥ data required (bytes)
peak BW (bytes/s)

Possible optimizations:

• Shrink working sets to fit in cache (pay this once)
• Use simple unit-stride access patterns

Reality is generally more complicated...

45

When and how to allocate

Why is this an O(n2) loop?
1 x = [];
2 for i = 1:n
3 x(i) = i;
4 end

46

When and how to allocate

• Access is not the only cost!
• Allocation / de-allocation also costs something
• So does garbage collection (where supported)
• Beware hidden allocation costs (e.g. on resize)
• Often bites naive library users

• Two thoughts to consider
• Pre-allocation (avoid repeated alloc/free)
• Lazy allocation (if alloc will often not be needed)

47

Storage layout

Desiderata:

• Compact (fit lots into cache)
• Traverse with simple access patterns
• Avoids pointer chasing

48

Multi-dimensional arrays

Two standard formats:

• Col-major (Fortran): Each column stored consecutively
• Row-major (C/C++): Each row stored consecutively

Ideally, traverse arrays with unit stride! Layout affects choice.

More sophisticated multi-dim array layouts may be useful...

49

Blocking / tiling

Classic example: Matrix multiply

• Load b× b block of A
• Load b× b block of B
• Compute product of blocks
• Accumulate into b× b block of C

Have O(b3) work for O(b2) memory references!

50

Data alignment and vectorization

• Vector load/stores faster if aligned (start at memory
addresses that are multiples of 64 or 256)

• Can ask for aligned blocks of memory from allocator
• Then want aligned offsets into aligned blocks
• Have to help compiler recognize aligned pointers!

51

Data alignment and cache contention

Issue: What if strided access causes conflict misses?

• Example: Walk across row of col-major matrix
• Example: Parallel arrays of large-power-of-2 size

Not the most common problem, but one to watch for.

52

Structure layouts

• Want b-byte type to start on b-byte memory boundary.
• Compiler may pad structures to enforce this.
• Advice: arrange structure fields in decreasing size order.

53

SoA vs AoS

1 // Struct of Arrays (parallel arrays)
2 typedef struct {
3 double* x;
4 double* y;
5 } aos_points_t;
6

7 // Array of Structs
8 typedef struct {
9 double x;
10 double y;
11 } point_t;
12 typedef point_t* soa_points_t;

54

SoA vs AoS

• SoA: Structure of Arrays
• Friendly to vectorization
• Poor locality to access all of one item
• Awkward for lots of libraries and programs

• AoS: Array of Structs
• Naturally supported default
• Not very SIMD-friendly

• Possible to combine the two...

55

Copy optimizations

Copy between formats to accelerate computations, e.g.

• Copy piece of AoS to SoA format
• Perform vector operations on SoA data
• Copy back out

Performance gains > copy costs? Plays great with tiling!

56

For the control freak

Can get (some) programmer control over

• Pre-fetching
• Uncached memory stores

But usually best left to compiler / HW.

57

Matrix multiplication

• This was a lot of stuff in a short time!
• Best way to digest it is try some things out
• First project: tune matrix-matrix multiply
• Due Sep 12 (about two weeks)

• Gives enough time to play with some ideas
• Not enough time for obsessive tuning to ruin lives

• We encourage partners – try to cross disciplines!

58

Recommended strategy

• Start with a small “kernel” multiply
• Maybe odd sizes, strange layouts – just go fast!
• Intel compiler may do fine with simple-looking code
• Deserves its own timing rig

• Use blocking to build up larger multiplies
• Will have to do something reasonable with edge blocks...

59

References

• My serial tuning notes.
• Ulrich Drepper, What Every Programmer Should Know
About Memory

• Intel Optimization Manual
• Hager and Wellein, Intro to HPC for Scientists and
Engineers

• Goedecker and Hoisie, Performance Optimization of
Numerically Intensive Codes

• Agner Fog’s Software Optimization Manuals

60

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/notes/serial-tuning.pdf
http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
https://www.crcpress.com/Introduction-to-High-Performance-Computing-for-Scientists-and-Engineers/Hager-Wellein/p/book/9781439811924
https://www.crcpress.com/Introduction-to-High-Performance-Computing-for-Scientists-and-Engineers/Hager-Wellein/p/book/9781439811924
http://epubs.siam.org/doi/book/10.1137/1.9780898718218
http://epubs.siam.org/doi/book/10.1137/1.9780898718218
http://www.agner.org/optimize/

