
CS 5220: Performance basics

David Bindel
2017-08-24

1



Starting on the Soap Box

• The goal is right enough, fast enough — not flop/s.
• Performance is not all that matters.

• Portability, readability, debuggability matter too!
• Want to make intelligent trade-offs.

• The road to good performance starts with a single core.
• Even single-core performance is hard.
• Helps to build on well-engineered libraries.

• Parallel efficiency is hard!
• p processors ̸= speedup of p
• Different algorithms parallelize differently.
• Speed vs a naive, untuned serial algorithm is cheating!

2



The Cost of Computing

Consider a simple serial code:
1 // Accumulate C += A*B for n-by-n matrices
2 for (i = 0; i < n; ++i)
3 for (j = 0; j < n; ++j)
4 for (k = 0; k < n; ++k)
5 C[i+j*n] += A[i+k*n] * B[k+j*n];

Simplest model:

1. Dominant cost is 2n3 flops (adds and multiplies)
2. One flop per clock cycle
3. Expected time is

Time (s) ≈ 2n3 flops
2.4 · 109 cycle/s× 1 flop/cycle

Problem: Model assumptions are wrong!
3



The Cost of Computing

Dominant cost is 2n3 flops (adds and multiplies)?

• Dominant cost is often memory traffic!
• Special case of a communication cost
• Two pieces to cost of fetching data

Latency Time from operation start to first result (s)
Bandwidth Rate at which data arrives (bytes/s)

• Usually latency≫ bandwidth−1 ≫ time per flop
• Latency to L3 cache is 10s of ns, DRAM is 3–4× slower
• Partial solution: caches (to discuss next time)

See: Latency numbers every programmer should know

4

https://gist.github.com/jboner/2841832


The Cost of Computing

One flop per clock cycle? For cluster CPU cores:

2flopsFMA × 4 FMA
vector FMA × 2vector FMAcycle = 16flopscycle

Theoretical peak (one core) is

Time (s) ≈ 2n3 flops
2.4 · 109 cycle/s× 16 flop/cycle

Makes DRAM latency look even worse! DRAM latency ∼ 100 ns:

100 ns× 2.4cyclens × 16flopscycle = 3840 flops

5



The Cost of Computing

Theoretical peak for matrix-matrix product (one core) is

Time (s) ≈ 2n3 flops
2.4 · 109 cycle/s× 16 flop/cycle

For 12 core node, theoretical peak is 12× faster.

• But lose orders of magnitude if too many memory refs
• And getting full vectorization is also not easy!
• We’ll talk more about (single-core) arch next week

6



The Cost of Computing

Sanity check: What is the theoretical peak of a Xeon Phi 5110P
accelerator?

Wikipedia to the rescue!

7

https://en.wikipedia.org/wiki/Xeon_Phi


The Cost of Computing

What to take away from this performance modeling example?

• Start with a simple model
• Simplest model is asymptotic complexity (e.g. O(n3) flops)
• Counting every detail just complicates life
• But we want enough detail to predict something

• Watch out for hidden costs
• Flops are not the only cost!
• Memory/communication costs are often killers
• Integer computation may play a role as well

• Account for instruction-level parallelism, too!

And we haven’t even talked about more than one core yet!

8



The Cost of (Parallel) Computing

Simple model:

• Serial task takes time T (or T(n))
• Deploy p processors
• Parallel time is T(n)/p

... and you should be suspicious by now!

9



The Cost of (Parallel) Computing

Why is parallel time not T/p?

• Overheads: Communication, synchronization, extra
computation and memory overheads

• Intrinsically serial work
• Idle time due to synchronization
• Contention for resources

We will talk about all of these in more detail.

10



Quantifying Parallel Performance

• Starting point: good serial performance
• Scaling study: compare parallel to serial time as a
function of number of processors (p)

Speedup =
Serial time
Parallel time

Efficiency = Speedup
p

• Ideally, speedup = p. Usually, speedup < p.
• Barriers to perfect speedup

• Serial work (Amdahl’s law)
• Parallel overheads (communication, synchronization)

11



Amdahl’s Law

Parallel scaling study where some serial code remains:

p = number of processors
s = fraction of work that is serial
ts = serial time
tp = parallel time ≥ sts + (1− s)ts/p

Amdahl’s law:

Speedup =
ts
tp

=
1

s+ (1− s)/p <
1
s

So 1% serial work =⇒ max speedup < 100×, regardless of p.

12



Strong and weak scaling

Ahmdahl looks bad! But two types of scaling studies:

Strong scaling Fix problem size, vary p
Weak scaling Fix work per processor, vary p

For weak scaling, study scaled speedup

S(p) =
Tserial(n(p))

Tparallel(n(p),p)

Gustafson’s Law:
S(p) ≤ p− α(p− 1)

where α is the fraction of work that is serial.

13



Pleasing Parallelism

A task is “pleasingly parallel” (aka “embarrassingly parallel”) if
it requires very little coordination, for example:

• Monte Carlo computations with many independent trials
• Big data computations mapping many data items
independently

Result is “high-throughput” computing – easy to get impressive
speedups! Says nothing about hard-to-parallelize tasks.

14



Dependencies

Main pain point: dependency between computations
1 a = f(x)
2 b = g(x)
3 c = h(a,b)

Compute a and b in parallel, but finish both before c!
Limits amount of parallel work available.

This is a true dependency (read-after-write). Also have false
dependencies (write-after-read and write-after-write) that can
be dealt with more easily.

15



Granularity

• Coordination is expensive — including parallel start/stop!
• Need to do enough work to amortize parallel costs
• Not enough to have parallel work, need big chunks!
• How big the chunks must be depends on the machine.

16



Patterns and Benchmarks

If your task is not pleasingly parallel, you ask:

• What is the best performance I reasonably expect?
• How do I get that performance?

Look at examples somewhat like yours – a parallel pattern –
and maybe seek an informative benchmark. Better yet: reduce
to a previously well-solved problem (build on tuned kernels).

NB: Easy to pick uninformative benchmarks and go astray.

17


