CS 5220: Introduction

David Bindel 2017-08-22

CS 5220: Applications of Parallel Computers

http://www.cs.cornell.edu/courses/cs5220/2017fa/

Time: TR 8:40–9:55 Location: Gates G01

Instructor: David Bindel (bindel@cs)

TA: Eric Hans Lee (erichanslee@cs)

Enrollment

http://www.cs.cornell.edu/courseinfo/enrollment

- Many CS classes (including 5220) limit pre-enrollment to ensure majors and MEng students can get in.
- · We almost surely will have enough space for all comers.
- · Enroll if you want access to class resources.
- · Enrolling as an auditor is OK.
- · If you will not take the class, please formally drop!

The Computational Science & Engineering Picture

Applications Everywhere!

These tools are used in more places than you might think:

- Climate modeling
- · CAD tools (computers, buildings, airplanes, ...)
- Control systems
- Computational biology
- Computational finance
- Machine learning and statistical models
- Game physics and movie special effects
- · Medical imaging
- Information retrieval
- ..

Parallel computing shows up in all of these.

Why Parallel Computing?

- Scientific computing went parallel long ago
 - · Want an answer that is right enough, fast enough
 - Either of those might imply a lot of work!
 - · ... and we like to ask for more as machines get bigger
 - · ... and we have a lot of data, too
- Today: Hard to get a non-parallel computer!
 - Totient nodes (2015): 12-core compute nodes
 - Totient accelerators (2015): 60-core Xeon Phi 5110P
 - My laptop (late 2013): Dual core i5 + built in graphics
- Cluster access ≈ internet connection + credit card

Lecture Plan

Roughly three parts:

- 1. **Basics:** architecture, parallel concepts, locality and parallelism in scientific codes
- 2. **Technology:** OpenMP, MPI, CUDA/OpenCL, cloud systems, compilers and tools
- 3. **Patterns:** Monte Carlo, dense and sparse linear algebra and PDEs, graph partitioning and load balancing, fast multipole, fast transforms

Objectives

- · Reason about code performance
 - · Many factors: HW, SW, algorithms
 - · Want simple "good enough" models
- Learn about high-performance computing (HPC)
 - · Learn parallel concepts and vocabulary
 - Experience parallel platforms (HW and SW)
 - · Read/judge HPC literature
 - · Apply model numerical HPC patterns
 - · Tune existing codes for modern HW
- · Apply good software practices

Prerequisites

Basic logistical constraints:

- · Default class codes will be in C
- · Our focus is numerical codes

Fine if you're not a numerical C hacker!

- · I want a diverse class
- · Most students have some holes
- · Come see us if you have concerns

Coursework: Lecture (10%)

- Lecture = theory + practical demos
 - · 60 minutes lecture
 - 15 minutes mini-practicum
 - Bring questions for both!
- Notes posted in advance
- · May be prep work for mini-practicum
- · Course evaluations are also required!

Coursework: Homework (15%)

- · Five individual assignments plus "HW0"
- · Intent: Get everyone up to speed
- · Assigned Tues, due one week later

Coursework: Small group assignments (45%)

- Three projects done with partners (1–3)
- · Analyze, tune, and parallelize a baseline code
- Scope is 2-3 weeks

Coursework: Final project (30%)

- · Groups are encouraged!
- · Bring your own topic or we will suggest
- · Flexible, but must involve performance
- Main part of work in November–December

Homework 0

- $\boldsymbol{\cdot}$ Posted on the class web page.
- Complete and submit by CMS by 8/29.

Questions?

How Fast Can We Go?

Speed records for the Linpack benchmark:

Speed measured in flop/s (floating point ops / second):

- · Giga (10⁹) a single core
- Tera (10¹²) a big machine
- Peta (10¹⁵) current top 10 machines (5 in US)
- Exa (10¹⁸) favorite of funding agencies

Current Record: China's Sunway TaihuLight

- 93 petaflop/s (125 petaflop/s peak)
- 15 MW (LAPACK) relatively energy efficient
 - Does not include custom chilled-water cooling unit
- Based on SW26010 manycore RISC processors
 - Management processing element (CPE) = 64-bit RISC core
 - Computer processing element (CPE) = 8×8 core mesh
 - Custom interconnect
 - Sunway Raise OS (Linux)
 - · Custom compilers (Sunway OpenACC)

Performance on TaihuLight (Dongarra, June 2016)

- · Theoretical peak: 125.4 petaflop/s
- Linpack: 93 petaflop/s (74% peak)
- Three SC16 Gordon Bell finalists
 - Explicit PDE solves: 30–40 petaflop/s (25–30%)
 - Implicit solver: 1.5 petaflop/s (1%)
 - · Numbers taken from June 2016, may have improved
 - Even with improvements: peak is not indicative!

Second: Tianhe-2 (33.9 pflop/s Linpack)

Commodity nodes, custom interconnect:

- · Nodes consist of Xeon E5-2692 + Xeon Phi accelerators
- Intel compilers + Intel math kernel libraries
- · MPICH2 MPI with customized channel
- · Kylin Linux
- TH Express-2

Alternate Benchmark: Graph 500

Graph processing benchmark (data-intensive)

- Metric: traversed edges per second (TEPS)
- K computer (Japan) tops the list (38.6 teraTEPS)
- Sunway TaihuLight is second (23.8 teraTEPS)
- Tianhe-2 is at 8 (2.1 teraTEPS)

Punchline

- · Some high-end machines look like high-end clusters
 - Except custom networks.
- · Achievable performance is
 - $\cdot \ll$ peak performance
 - Application-dependent
- · Hard to achieve peak on more modest platforms, too!

Parallel Performance in Practice

So how fast can I make my computation?

- Peak > Linpack > Gordon Bell > Typical
- Measuring performance of real applications is hard
 - Even figure of merit may be unclear (flops, TEPS, ...?)
 - Typically a few bottlenecks slow things down
 - · And figuring out why they slow down can be tricky!
- · And we really care about time-to-solution
 - Sophisticated methods get answer in fewer flops
 - · ... but may look bad in benchmarks (lower flop rates!)

See also David Bailey's comments:

- Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers (1991)
- Twelve Ways to Fool the Masses: Fast Forward to 2011 (2011)

Quantifying Parallel Performance

- · Starting point: good serial performance
- Strong scaling: compare parallel to serial time on the same problem instance as a function of number of processors (p)

$$Speedup = \frac{Serial time}{Parallel time}$$
$$Efficiency = \frac{Speedup}{p}$$

- Ideally, speedup = p. Usually, speedup < p.
- · Barriers to perfect speedup
 - · Serial work (Amdahl's law)
 - Parallel overheads (communication, synchronization)

Amdahl's Law

Parallel scaling study where some serial code remains:

p = number of processors

s = fraction of work that is serial

 $t_{\rm S} = {\rm serial \ time}$

 $t_p = \text{parallel time} \ge st_s + (1 - s)t_s/p$

Amdahl's law:

Speedup =
$$\frac{t_s}{t_p} = \frac{1}{s + (1 - s)/p} > \frac{1}{s}$$

So 1% serial work \implies max speedup < 100 \times , regardless of p.

A Little Experiment

Let's try a simple parallel attendance count:

- Parallel computation: Rightmost person in each row counts number in row.
- · Synchronization: Raise your hand when you have a count
- Communication: When all hands are raised, each row representative adds their count to a tally and says the sum (going front to back).

(Somebody please time this.)

A Toy Analysis

Parameters:

$$n =$$
 number of students $r =$ number of rows $t_c =$ time to count one student $t_t =$ time to say tally $t_s \approx nt_c$ $t_p \approx nt_c/r + rt_t$

How much could I possibly speed up?

Modeling Speedup

(Parameters:
$$n = 80$$
, $t_c = 0.3$, $t_t = 1$.)

Modeling Speedup

The bound

speedup
$$< \frac{1}{2} \sqrt{\frac{nt_c}{t_t}}$$

is usually tight.

Poor speed-up occurs because:

- The problem size n is small
- The communication cost is relatively large
- The serial computation cost is relatively large

Some of the usual suspects for parallel performance problems!

Things would look better if I allowed both *n* and *r* to grow — that would be a *weak* scaling study.

Summary: Thinking about Parallel Performance

Today:

- · We're approaching machines with peak exaflop rates
- · But codes rarely get peak performance
- · Better comparison: tuned serial performance
- · Common measures: speedup and efficiency
- Strong scaling: study speedup with increasing p
- Weak scaling: increase both p and n
- Serial overheads and communication costs kill speedup
- · Simple analytical models help us understand scaling

And in case you arrived late

http://www.cs.cornell.edu/courses/cs5220/2017fa/

... and please enroll and submit HW0!