
CS 5220: Introduction

David Bindel
2017-08-22

1



CS 5220: Applications of Parallel Computers

http://www.cs.cornell.edu/courses/cs5220/2017fa/

Time: TR 8:40–9:55
Location: Gates G01
Instructor: David Bindel (bindel@cs)
TA: Eric Hans Lee (erichanslee@cs)

2

http://www.cs.cornell.edu/courses/cs5220/2017fa/


Enrollment

http://www.cs.cornell.edu/courseinfo/enrollment

• Many CS classes (including 5220) limit pre-enrollment to
ensure majors and MEng students can get in.

• We almost surely will have enough space for all comers.
• Enroll if you want access to class resources.
• Enrolling as an auditor is OK.
• If you will not take the class, please formally drop!

3

http://www.cs.cornell.edu/courseinfo/enrollment


The Computational Science & Engineering Picture

Application

Analysis Computation

4



Applications Everywhere!

These tools are used in more places than you might think:

• Climate modeling
• CAD tools (computers, buildings, airplanes, ...)
• Control systems
• Computational biology
• Computational finance
• Machine learning and statistical models
• Game physics and movie special effects
• Medical imaging
• Information retrieval
• ...

Parallel computing shows up in all of these.

5



Why Parallel Computing?

• Scientific computing went parallel long ago
• Want an answer that is right enough, fast enough
• Either of those might imply a lot of work!
• ... and we like to ask for more as machines get bigger
• ... and we have a lot of data, too

• Today: Hard to get a non-parallel computer!
• Totient nodes (2015): 12-core compute nodes
• Totient accelerators (2015): 60-core Xeon Phi 5110P
• My laptop (late 2013): Dual core i5 + built in graphics

• Cluster access ≈ internet connection + credit card

6



Lecture Plan

Roughly three parts:

1. Basics: architecture, parallel concepts, locality and
parallelism in scientific codes

2. Technology: OpenMP, MPI, CUDA/OpenCL, cloud systems,
compilers and tools

3. Patterns: Monte Carlo, dense and sparse linear algebra
and PDEs, graph partitioning and load balancing, fast
multipole, fast transforms

7



Objectives

• Reason about code performance
• Many factors: HW, SW, algorithms
• Want simple “good enough” models

• Learn about high-performance computing (HPC)
• Learn parallel concepts and vocabulary
• Experience parallel platforms (HW and SW)
• Read/judge HPC literature
• Apply model numerical HPC patterns
• Tune existing codes for modern HW

• Apply good software practices

8



Prerequisites

Basic logistical constraints:

• Default class codes will be in C
• Our focus is numerical codes

Fine if you’re not a numerical C hacker!

• I want a diverse class
• Most students have some holes
• Come see us if you have concerns

9



Coursework: Lecture (10%)

• Lecture = theory + practical demos
• 60 minutes lecture
• 15 minutes mini-practicum
• Bring questions for both!

• Notes posted in advance
• May be prep work for mini-practicum
• Course evaluations are also required!

10



Coursework: Homework (15%)

• Five individual assignments plus “HW0”
• Intent: Get everyone up to speed
• Assigned Tues, due one week later

11



Coursework: Small group assignments (45%)

• Three projects done with partners (1–3)
• Analyze, tune, and parallelize a baseline code
• Scope is 2-3 weeks

12



Coursework: Final project (30%)

• Groups are encouraged!
• Bring your own topic or we will suggest
• Flexible, but must involve performance
• Main part of work in November–December

13



Homework 0

• Posted on the class web page.
• Complete and submit by CMS by 8/29.

14



Questions?

15



How Fast Can We Go?

Speed records for the Linpack benchmark:

http://www.top500.org

Speed measured in flop/s (floating point ops / second):

• Giga (109) – a single core
• Tera (1012) – a big machine
• Peta (1015) – current top 10 machines (5 in US)
• Exa (1018) – favorite of funding agencies

16

http://www.top500.org


Current Record: China’s Sunway TaihuLight

• 93 petaflop/s (125 petaflop/s peak)
• 15 MW (LAPACK) – relatively energy efficient

• Does not include custom chilled-water cooling unit

• Based on SW26010 manycore RISC processors
• Management processing element (CPE) = 64-bit RISC core
• Computer processing element (CPE) = 8× 8 core mesh
• Custom interconnect
• Sunway Raise OS (Linux)
• Custom compilers (Sunway OpenACC)

17



Performance on TaihuLight (Dongarra, June 2016)

• Theoretical peak: 125.4 petaflop/s
• Linpack: 93 petaflop/s (74% peak)
• Three SC16 Gordon Bell finalists

• Explicit PDE solves: 30–40 petaflop/s (25–30%)
• Implicit solver: 1.5 petaflop/s (1%)
• Numbers taken from June 2016, may have improved
• Even with improvements: peak is not indicative!

18



Second: Tianhe-2 (33.9 pflop/s Linpack)

Commodity nodes, custom interconnect:

• Nodes consist of Xeon E5-2692 + Xeon Phi accelerators
• Intel compilers + Intel math kernel libraries
• MPICH2 MPI with customized channel
• Kylin Linux
• TH Express-2

19



Alternate Benchmark: Graph 500

Graph processing benchmark (data-intensive)

• Metric: traversed edges per second (TEPS)
• K computer (Japan) tops the list (38.6 teraTEPS)
• Sunway TaihuLight is second (23.8 teraTEPS)
• Tianhe-2 is at 8 (2.1 teraTEPS)

20



Punchline

• Some high-end machines look like high-end clusters
• Except custom networks.

• Achievable performance is
• ≪ peak performance
• Application-dependent

• Hard to achieve peak on more modest platforms, too!

21



Parallel Performance in Practice

So how fast can I make my computation?

• Peak > Linpack > Gordon Bell > Typical
• Measuring performance of real applications is hard

• Even figure of merit may be unclear (flops, TEPS, ...?)
• Typically a few bottlenecks slow things down
• And figuring out why they slow down can be tricky!

• And we really care about time-to-solution
• Sophisticated methods get answer in fewer flops
• ... but may look bad in benchmarks (lower flop rates!)

See also David Bailey’s comments:

• Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers (1991)

• Twelve Ways to Fool the Masses: Fast Forward to 2011 (2011) 22

http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-12ways.pdf


Quantifying Parallel Performance

• Starting point: good serial performance
• Strong scaling: compare parallel to serial time on the
same problem instance as a function of number of
processors (p)

Speedup =
Serial time
Parallel time

Efficiency = Speedup
p

• Ideally, speedup = p. Usually, speedup < p.
• Barriers to perfect speedup

• Serial work (Amdahl’s law)
• Parallel overheads (communication, synchronization)

23



Amdahl’s Law

Parallel scaling study where some serial code remains:

p = number of processors
s = fraction of work that is serial
ts = serial time
tp = parallel time ≥ sts + (1− s)ts/p

Amdahl’s law:

Speedup =
ts
tp

=
1

s+ (1− s)/p >
1
s

So 1% serial work =⇒ max speedup < 100×, regardless of p.

24



A Little Experiment

Let’s try a simple parallel attendance count:

• Parallel computation: Rightmost person in each row
counts number in row.

• Synchronization: Raise your hand when you have a count
• Communication: When all hands are raised, each row
representative adds their count to a tally and says the
sum (going front to back).

(Somebody please time this.)

25



A Toy Analysis

Parameters:

n = number of students
r = number of rows
tc = time to count one student
tt = time to say tally
ts ≈ ntc
tp ≈ ntc/r+ rtt

How much could I possibly speed up?

26



Modeling Speedup

0 2 4 6 8 10 12

1

1.5

2

Rows

Pr
ed
ic
te
d
sp
ee
du
p

(Parameters: n = 80, tc = 0.3, tt = 1.)

27



Modeling Speedup

The bound
speedup <

1
2

√
ntc
tt

is usually tight.

Poor speed-up occurs because:

• The problem size n is small
• The communication cost is relatively large
• The serial computation cost is relatively large

Some of the usual suspects for parallel performance problems!

Things would look better if I allowed both n and r to grow —
that would be a weak scaling study.

28



Summary: Thinking about Parallel Performance

Today:

• We’re approaching machines with peak exaflop rates
• But codes rarely get peak performance
• Better comparison: tuned serial performance
• Common measures: speedup and efficiency
• Strong scaling: study speedup with increasing p
• Weak scaling: increase both p and n
• Serial overheads and communication costs kill speedup
• Simple analytical models help us understand scaling

29



And in case you arrived late

http://www.cs.cornell.edu/courses/cs5220/2017fa/

... and please enroll and submit HW0!

30

http://www.cs.cornell.edu/courses/cs5220/2017fa/

