19 Mar 2019 Fun with Hashing

1. Dictionaries
2. Fingerprinting
3. Bloom filters
4. Cout-min sketch
 courting queries in a set or multiset.

Standing assumptions:
Element of the set/multiset are drawn from a universe of N ptential elements. $N \ggg 1$.
The set/multiset has at most m elements in total.

$$
N \gg m \gg 1 .
$$

($m \approx$ amount of space ne might potentially allocate for a data structure.)
($N \approx$ exponentially greater than that.)
E.9. possword checking $N \approx 2^{256}, m \approx 2^{19}$.
(usually)
Elemis may be inserted or queried, never deleted.
0. Trivial solution. Bit vector of length N.
tor wick space.

1. Detorminstin solution. Balanced binary search tree (e.,. red/black) string members of the set.

Suppers $O(\log m)$ insertion, deletion, lookup Space $O(m \lg , N)$.

2 Hash table. choose based on m.
Array of size n.
Hash function $h:[N] \rightarrow[n]$.
chosen randomly/pseudorandymly from a hash family of, a set of functions $[N] \longrightarrow[n]$.

A good hash function:
(1) "looks random": for any $i \in[\mathcal{N}] \quad h(i)$ unit dittrib over [n],

$$
\begin{aligned}
& \text { over }[n], \quad i \neq j \text {, the pair }(h(i), h(j)) \\
& \text { For any, }
\end{aligned}
$$

For any $i_{1}, i_{2}, \ldots, i_{k}$ all distinct, $\left(h(i),, \ldots, h\left(i_{k}\right)\right)$ unis k distinb over $[n]^{k}$ " k-wise indef"
(2) Can be stored in small space and evaluated quickly.

Example of a pairwise independent h.

$$
\begin{aligned}
& h(x):=a x+b \quad(\bmod n) \\
& \left.\begin{array}{ll}
a \in(\mathbb{Z} /(n)) & \text { random } \\
b \in(\mathbb{Z} /(n)) & \text { random }
\end{array}\right\} \text { unitoruly }
\end{aligned}
$$

Interesting question. Fastest alg, for generating a random number co-prime to n, given n in binary?
Read "Gensating Random Factored Integers, Easily" by Adam Kalai.

Analysis. $\quad h(x)$ unis dontrisuted in $\mathbb{Z} /(n)$ because even holding a fixed, so $a \cdot x$ is fixed, b is still random. So $a x+b$ is unit distil b.

If n is prime, then for $x \neq y$, $h(x)$ unit disturb.
$h(x)-h(y)=a x+b-a y \not p=a \cdot(x-y)$ unit dostrib.

Hash function \rightarrow dictionary.

Date structure is array of size n. Elements called "buckets."

1. Chain hashing: each bucket Antares a linked list of all $x \in S$ such that $h\left(h_{x}\right)=i$.
2. Linear probing: encl bucket in storesitomest element of S.
insert (x) : compute $h(x)$ and find Fist unoccupied bucket starting from $h(x)$. Insert x in fist empty bucket. start at $h(x)$ and search forward until:

- find x, answer "present"
- find empty bucket, answer "absent".

Both mothade support $O(1)$ expected time per insert/ query provided $n>c \cdot m$ for some $c>1$.
Space requirement $O(m \cdot \log N)$ bits.
Advantage: $O(1)$ insert/query rather then $O(\log m)$
Disadvantage: randomized, running time guarantee only in expectation.
Tries: a data stimeture that matches these bounds asymptotically, deterministically,
Approximate membership using Bban filters
Ambry $A[i] \quad(0 \leq i<n)$. Array values are bits.
$n=\left[\left(\frac{k}{\ln 2}\right) \cdot m\right] \quad k=$ parameter related to failure probechity. E.9. $k=6$ or 7 usually a sod chare.
\therefore about 8-10 bits per element, in practice.

Hash functions $\quad h_{1}, \ldots, h_{k}:[N] \rightarrow[n]$
(Same k as before, $k=6$ or 7 typically.) h_{1}, \ldots, h_{k} indep rand samples frown of.
insert (x) : set $A\left[h_{1}(x)\right]=A\left[h_{2}(x)\right]=\cdots=A\left[h_{k}(x)\right]=1$. query (x) : cheek if $A\left[h_{1}(x)\right], \ldots, A\left[h_{k}(x)\right]$ all equal 1.

Both operations take $O(1 a)$.
No false negatives.
Some fake positives. $\operatorname{Pr}($ false position $)=2^{-k}$ if
the array has half 1:s, half O's.
Sketchy andysis that shows why $A[]$ is half 1 's, half ϕ^{\prime} 's.
After inserting m elements.

$$
\begin{aligned}
& \mathbb{E}[\# \text { of occupied hash } \text { Lackats })=\sum_{i} \operatorname{Pr}[A[i]=1] \\
& =\sum_{i} \operatorname{fr}\left(\exists x \in S \quad \exists j \in[k] \quad h_{j}(x)=i\right) \\
& =\sum_{i} 1-\operatorname{lr}\left(\forall x \in S \quad \forall_{j}+(k] \quad h_{j}(x) \neq i\right) \\
& \approx \sum_{i}\left[1-\prod_{x \in S} \prod_{j=1}^{k}\left(1-\frac{1}{n}\right)\right] \\
& =n \cdot\left[1-\left(1-\frac{1}{n}\right)^{k m}\right] \\
& n=\frac{k}{\ln 2} m, \quad k_{m}=n \cdot \ln (2) . \\
& =n\left[1-\left\{\left(1-\frac{1}{n}\right)^{n}\right\}^{\ln (2)}\right] \\
& \approx \frac{n}{2} \text {. }
\end{aligned}
$$

