Brute Force Algorithm (Yunhuo Zhang)
I. 3-step Approach to Interview step try brute force today's class step 2 justify whether brute force is enough
step 3 if not, try advanced algorithms
II. A Starting Problem
codeforces Link nttps://codeforces.com/problemset/problem/681/B
Input: an integer $n \quad\left(1 \leqslant n \leqslant 10^{9}\right)$
Output: YES if there exists non-negative integers a, b, c

$$
\text { that } a \times 1234567+b \times 123456+c \times 1234=n
$$

NO ow.
step Solution: for -loop enumeration style of brute force brute force
for (int $\left.a=0 ; a \leqslant \frac{n}{1234567} ; a t t\right)$
for (int $\left.b=0 ; b \leq \frac{n}{123456} ; b+t\right)$
if $(n-a \times 1234567-b \times 123456)$
$\% 1234==0$ then return true return false

Notice! Tricky!
(1) 10^{9} is a large number and using long long is safer than int for arithmetic calculations
(2) if, in the problem, c is positive integer instead of non-negative integer, one needs to check $c \neq 0$ in the inner if-statement
step 2 Why the brute force algorithm is sufficient?
justification I_{n} the algorithm, there are 2 loops:
int a from l to $\frac{n}{1234567}$
int b from 1 to $\frac{n}{123456}$
since $n \leqslant 10^{9}$, the maximum \# loop is

$$
\frac{10^{9}}{1234567} \times \frac{10^{9}}{123456} \approx 810 \times 8100=6561000
$$

Experience:
if $N \leqslant 10^{6}, O(N)$ algorithms usually run within 1 second perfectly
if $N \leqslant 10^{7}$, a simple $O(N)$ loo p usually run within I second perfectly
Conclusion: since $6561000 \leqslant 10^{7}$, this brute force solution is efficient enough and can run within 1 second

Homework
codeforce link: https://codeforces.com/problemset/problem/727/A For this problem, repeat stepl and step 2, namely try brute force algorithm and justify that brute force is efficient enough.

