
CS 5154: Software Testing

Foundations

Check-in & Announcements

• Did you get access to the textbook?

• Reading 1 will be assigned after class (Canvas & Gradescope)

• Next ~2 classes: Hands-on lessons on Test Automation

2

Earlier in this course…

Testing is usually the last line of
defense against bugs

3

But what exactly is a “bug”?

4

What is a “bug” in this program?

// count no. of “0” elements in x
public static int numZero (int[] x) {
int count = 0;
for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}
return count;

}
5

In this program, “bug” could mean…

public static int numZero (int[] x) {
int count = 0;
for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}
return count;

}

Should start
searching at 0, not 1

Test 1
[2, 7, 0]

i is 1, not 0, on
the first iteration

Expected: 1
Actual: 1

Test 2
[0, 2, 7]

count is 0, instead
of 1, at the return
statement

Expected: 1
Actual: 0

6

Building shared terminology in CS 5154

• Fault : static defect in the code

• Error : incorrect internal state caused by a fault

• Failure : observed behavior expected behavior

7

Faults of commission vs. Faults of omission

// count no. of “0” elements in x
public static int numZero (int[] x) {
int count = 0;
for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}
return count;

}
8

Why is this shared terminology important?

• Show off the knowledge you gained in CS 5154 

• Be on the same page in CS 5154

• We will build on these terminologies

• Software testing industry standard terminologies

9

Example: identify a fault, error, failure

// compute arithmetic mean of elements in array
double avg(double[] nums) {

int n = nums.length; double sum = 0; int i = 0;
while (i<n)

sum = sum + nums[i];
i = i + 1;

double avg = sum / n;
return avg;

} 10

The faults that caused major failures

Failure Impact Fault
NASA’s Mars
lander

$125,000,000 satellite lost No Pound/Newton conversion

THERAC-25 6 patients died Several: see link
Ariane 5
explosion

$7,500,000,000 lost Exception-handling fault (64-bit
to 16-bit conversion)

Northeast
blackout

50 million people lost
power in US and Canada,
$6,000,000,000 lost

Buffer overflow in monitoring
system

11

Questions about Faults, Errors, Failures

12

In software testing, we write tests to find
faults before those faults find the users

13

Recall: what is a test?

public static int numZero (int[] x) {
int count = 0;
for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}
return count;

}

Test 1
[2, 7, 0]
Expected: 1
Actual: 1

Test 2
[0, 2, 7]

Expected: 1
Actual: 0

14

Some components of a test

• Test Case Values: input data needed to execute the code under test

• Expected Results: output that is produced if the code is correct

• Test Oracle: decides if observed output match expected output

15

Last lecture: why “well-tested” software fails?

16

Why does “well-tested” software fail?

• Are the tests effective for finding faults?

• Can testing guarantee the absence of failures?

• Is the software really “well tested”?

• Has the testing been done with the right goals?

17

A test is effective if it…

1. Reaches program location(s) that contain a fault

2. Infects the program state after executing a faulty location

3. Propagates the infected state into incorrect output

4. Reveals part of the incorrect output to the test oracle

18

RIPR fault/failure model of test effectiveness

• Reachability

• Infection

• Propagation

• Revealability

Test

Fault

Incorrect
Program

State Test
Oracles

Final Program State

Observed Final
Program State

Reaches

Infects

Propagates Reveals

Incorrect
Final
State

Observed
Final Program

State

We will use the
RIPR model to
learn how to write
effective tests

19

A fundamental limitation of software testing

• Claim: testing can only show the presence of failures, not their absence

• Is this claim true?

• Lesson: testing is one of many tools for improving software quality

20

Other software quality assurance techniques
Co

rr
ec

tn
es

s G
ua

ra
nt

ee

Scale

Formal
Verification

?

Testing

?

?

?

?

21

Other software quality assurance techniques
Co

rr
ec

tn
es

s G
ua

ra
nt

ee

Scale

Formal Proofs

Runtime
Verification

Testing

Static Program
Analysis

Code
Review

Model
Checking

Dynamic
Program
Analysis

22

Is software really “well-tested”?

• Testers use coverage criteria to measure how well-tested software is

• What are some coverage criteria that you know?

23

Coverage criteria: pros

• Provides a way to know when to stop testing

• Can be continuously measured during regression testing

• Maximize the “bang for the buck”
• find the fewest tests that will find the most faults

24

Coverage criteria: cons

• Some criteria are “weaker” than others

• Strong criteria are harder to achieve or more expensive

• HUNDREDS of criteria have been proposed!

• Many developers are not trained in test design 

25

Discuss: how to create effective tests?

/** Return first index of Node n in path, or
* -1 if n is not present in path */

public int indexOf (Node n, List<Node> path){
for (int i=0; i < path.size(); i++){

if (path.get(i).equals(n))
return i;

}
return -1;

}

How would you go about
producing effective test
cases for this method?

26

“We cannot solve our problems with the same thinking that
we used when we created them”

- Albert Einstein (?)
- Yogi Bera (?)

“It is difficult to create effective tests if we only look at code.
We need a higher level of abstraction”

- Offutt and Ammann

27

Producing effective tests for indexOf (1)

int indexOf (Integer n, List<Integer> path){
for (int i=0; i < path.size(); i++){

if (path.get(i).equals(n))
return i;

}
return -1;

}

45

3

2

1 i=0

i<path.size()

if

return ireturn -1

Control
Flow Graph

28

Producing effective tests for indexOf (2)

29

45

3

2

1

Graph: abstract version Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements
for Edge-Pair
Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

Work with your neighbor
• Write input values that satisfy the Edge-Pair coverage requirements

/**Return first index of Integer n in path, or

* -1 if n is not present in the path */

int indexOf (Integer n, List<Integer> path){

for (int i=0; i < path.size(); i++){

if (path.get(i).equals(n))

return i;

}

return -1;

}

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

30

45

3

2

1 i=0

i<path.size()

if

return ireturn -1

Question: is indexOf now well-tested?

31

We just saw Test Design in action

• Test Design: a process for creating effective tests

• A major ingredient towards becoming a great tester

• The most mathematical and technically challenging testing activity
• Requires knowledge of discrete math: graphs, sets, relations, etc.

32

The steps in test design

1. Do math or analysis to obtain test requirements

2. Find input values that satisfy the test requirements

3. Automate the tests

4. Run the tests

5. Evaluate the tests

33

In CS5154: Model-Driven Test Design

• We will do test design w.r.t. four models of software

• The first part of the course and the textbook cover MDTD

Input
Domains Graphs Logic

Expressions
Syntax

A: {0, 1, >1}
B: {600, 700, 800}
C: {cs, ece, is, sds}

(not X or not Y) and A and B
if (x > y)

z = x - y;
else

z = 2 * x;

34

• Multiple test designs may exist for the same code

• Considering cost/benefit tradeoffs in designs is an essential part of SE

MDTD is about DESIGN

Image Credits: https://blogs.perficient.com/2011/07/22/how-to-build-a-tire-swing-a-case-for-agile-development/
35

Why should you care about MDTD?

• Organize HUNDREDs of criteria around four models of software

• Develop a disciplined approach to engineering your tests
• What’s the difference btw a programmer and a software engineer?

• Develop “testing as a mental discipline” mindset (level 4)

36

Testing goals at different levels of maturity

Level 0

Level 1

Level 2

Level 3

Level 4

37

Level 0 thinking

• Purpose: show that program runs on arbitrary/provided inputs

• Debug the program if it does not work on said inputs

• Problem: incorrect programmer behavior vs. programmer mistakes?

38

Level 1 thinking

• Purpose: use tests to show that a program is correct

• Problems:

• If there are no failures, is software good or tests are not effective?

• When to stop testing? (testing cannot prove programs correct)

39

Level 2 thinking

• Purpose: use tests to show that a program is incorrect

• Problems:

• Can lead to adversarial relationship among developers 

• What if the tests do not fail?

40

Level 3 thinking

• Purpose: team-based approach to reducing risk of software failures

• Problems:

• Testing is the only way to improve software quality

• Focuses on software, not on developers that write software

41

Level 4 thinking

• Purpose: testing as a mental discipline that improves software quality

• Effects:

• Improve the ability of developers to write high-quality software

• Invest in continued quality measurement and improvement

• Make testers part of project leadership

42

Poll: what level of testing maturity are you at?
• Level 0: testing == debugging

• Level 1: testing is done to show program correctness

• Level 2: testing is done to show that software does not work

• Level 3: testing is done to reduce the risk of using software

• Level 4: testing is a mental discipline that helps build high-quality software
43

Some goals of CS 5154

• Moving you (and your organization) towards Level 4 thinking

• Teach you to be “change agents” who advocate for Level 4 thinking

44

What we learned

• Standard testing terminology (test, fault, error, failure)

• Conditions that effective tests must meet (the RIPR model)

• Fundamental limit of software testing

• Introduction to model-driven test design

• Levels of test maturity

45

Next

• Test Automation

46

