
CS 5154: Software Testing

Applying Logic Coverage
to Source Code

Owolabi Legunsen

Steps in Logic-based MDTD

• Develop a model of the software as a set of predicates 
• That’s it!
• But how?

• Require tests to satisfy some combination of clauses 
• We learned some criteria and their strengths/weaknesses

3

Predicates: logic expressions in source code

• Predicates are derived from decision statements
• if, while, for, switch, do-while

• In programs, most predicates have less than four clauses
• In fact, most have just one clause

• With one clause, CoC, ACC, and CC collapse to predicate coverage (PC)
• ACC is only useful with three or more clauses

4

Finding values for variables in predicates

5

public int checkVal(int x) {
y = x*2;
if (x>0)

if ((x>10 && x<20) || y==50)
return 1;

else
if ((x<-10 && x>-20) || y<-60)

return 2;
}

Some things to consider when finding values

• Reachability : tests must reach the predicate

• Controllability : tests must cause the (clauses in a) predicate to have
the truth assignment that we want

• Internal variables : reachability and controllability require reasoning
about variables that are not inputs

6

Finding values for variables in predicates (2)

7

1. public int checkVal(int x) {
2. y = x*2;
3. if (x>0)
4. if ((x>10 && x<20) || y==50)
5. return 1;
6. else
7. if ((x<-10 && x>-20) || y<-60)
8. return 2;
9. }

What internal variables do
we need to think about?

y

What values of x do we
need to reach the
predicate on line 4?

x == 25

Control: what values of x will satisfy the truth assignment TFT in
the predicate on line 4?

x > 0

Another issue: beware of code transformations

With one clause, CoC, ACC, and CC collapse to
predicate coverage (PC). So, why not just

transform all predicates to have only one clause?

8

Why not just do this?

9

if ((a && b) || c)
{

S1;
} else
{

S2;
}

Transformation 1

if (a) {
if (b)

S1;
else {

if (c)
S1;

else
S2;

}
} else {

if (c)
S1;

else
S2;

}

Problems with Transformation 1

10

1. We trade one problem for two problems :

• Maintenance becomes harder

• Reachability can be harder to compute

if (a) {
if (b)

S1;
else {

if (c)
S1;

else
S2;

}
} else {

if (c)
S1;

else
S2;

}

More problems with Transformation 1

11

a b c (ab)c CACC PCT

T T T T X
T T F T X
T F T T X X
T F F F X X
F T T T X
F T F F X
F F T T
F F F F X

2. Consider coverage :
• CACC on original code requires four rows
• PC on transformed code requires five rows

• Testing transformed code is more costly!

• Tests that satisfy PC on transformed code
do not satisfy CACC on the original code

Okay, but maybe I can just do this?

12

if ((a && b) || c)
{

S1;
} else
{

S2;
}

Transformation 2

d = a && b;
e = d || c;
if (e)
{

S1;
} else
{

S2;
}

Problems with Transformation 2

13

1. We move the complexity into computations :

• Logic criteria are not effective at testing computations

d = a && b;
e = d || c;
if (e)
{

S1;
} else
{

S2;
}

More problems with Transformation 2

14

2. Consider coverage :
• CACC on original code requires four rows
• PC on transformed code requires two rows

• PC on transformed code is equivalent to
clause coverage (CC) on original code
• CC is not effective for testing

a b c (ab)c CACC PCT

T T T T X
T T F T X
T F T T X
T F F F X
F T T T
F T F F X
F F T T
F F F F X

The moral of the transformation story

15

• Logic criteria exist to help us design better software

• Circumventing logic criteria via program transformations is unsafe

One last issue: side effects in predicates

• Runtime system checks A, then B, if B is false, check A again
• But now A has a different value!
• How to write a test that has two different values for A?

16

A && (B || A) B is : changeVar (A)

• There are no clear answers to this controllability problem!

We suggest a social solution : ask your team!

Summary: Logic Coverage and Source Code

• Predicates come from decision expressions (while, if, do-while), etc

• To find values for testing, reachability, controllability, and internal
variables must be considered

• Using program transformations to sidestep logic criteria is a bad idea

17

Next

• Practicing logic coverage concepts on the next homework

• Syntax-based testing

18

