CS 5154: Software Testing

Active Clause Coverage

Owolabi Legunsen

Recall the four software models in this course

A: $\{0,1,>1\}$
B: $\{600,700,800\}$
C: \{cs, ece, is, sds\}

Syntax

We need criteria that are not as costly as CoC

- The general idea is quite simple:

Test each clause independently from the other clauses

- But, getting the details right is hard
- e.g., what exactly does "independently" mean ?
- The book presents this idea as "making clauses active" ...

Active Clauses

- A weakness of Clause Coverage: values do not always make a difference
- Values $((5<10) \vee$ true $) \wedge(1>=1 * 1)$ for $((a<b) \vee D) \wedge\left(m>=n^{*} o\right)$
- Only the last clause counts!
- To really test the results of a clause, the clause should be the determining factor in what the predicate evaluates to

Determination
A clause c_{i} in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses c_{j} are such that changing c_{i} changes the value of p

- Making c_{i} determine p is said to make the clause active
- Condition under which c_{i} determines p

$$
\forall c_{j} \in c_{p} \backslash c_{i} \exists \text { assignment }\left(c_{j}\right) \text { st. } p\left(c_{i}=\text { true }\right) \neq p\left(c_{i}=\text { fobs }\right)
$$

$$
\text { Where a ssifrment }\left(c_{j}\right) \text { is } c_{j}=\text { pone or } c_{j}=\text { false }
$$

Acfine chase cúnteria
 The essence of testing with determination

1. Pick one clause in predicate p to be the major clause c_{i}
2. Find conditions under which c_{i} determines p
3. Find a test that makes c_{i} true and a test that makes c_{i} false
4. Repeat steps 1 to 3 for all other clauses in p
5. Eliminate redundant tests

Examples: determining predicates

$$
P=A \vee B
$$

if $B=$ true, p is always true.
so if $B=$ false, A determines p.
if $A=$ false, B determines p.

$P=A \wedge B$

if $B=$ false, p is always false.
so if $B=$ true, A determines p.
if $A=$ true, B determines p.

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \vee \mathrm{b}$
$\mathbf{1}$	T	T	T
$\mathbf{2}$	T	F	T
3	F	T	T
$\mathbf{4}$	F	F	F

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \wedge \mathbf{b}$
$\mathbf{1}$	T	T	T
$\mathbf{2}$	T	F	F
3	F	T	F
$\mathbf{4}$	F	F	F

More examples: determining predicates

$P=A \oplus B$

if $B=$ true, A determines p.
if $B=$ false, \boldsymbol{A} determines p.
so, A determines p for any B.

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \oplus \mathbf{b}$
$\mathbf{1}$	T	T	F
$\mathbf{2}$	T	F	T
3	F	T	T
$\mathbf{4}$	F	F	F

$P=A \leftrightarrow B$

if $B=$ true, A determines p.
if $B=$ false, A determines p.
so, A determines p for any B.

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \leftrightarrow \mathbf{b}$
1	\mathbf{T}	\mathbf{T}	T
2	T	F	F
$\mathbf{3}$	F	\mathbf{T}	F
4	F	F	T

Testing with determination -)

- Goal : Find tests for each clause when that clause determines the value of the predicate
- This goal is formalized in a family of criteria that have subtle, but very important, differences

Active Clause Coverage

- Step 1: For each p in P and each major clause c_{i} in $C p$, choose minor clauses $c_{j, j!=i}$, so that c_{i} determines p.

Active Clause Coverage (ACC) : TR has two requirements for each $c_{i}: c_{i}$ evaluates to true and c_{i} evaluates to false.

- ACC is a form of Multiple Condition Decision Coverage (MCDC)
- MCDC is required by the FAA for safety-critical software

Example on Active Clause Coverage

A formulaic way of determining predicates?

- Finding values for minor clauses c_{j} is easy for simple predicates
- How to find values for more complicated predicates?
- We need some "formula" that is easy to apply

A definitional way: when does c determine p ?

- Let $p_{c=t r u e}$ be predicate p with every occurrence of c replaced by true
- Let $p_{c=f a l s e}$ be predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=t r u e}$ and $p_{c=f a l s e}$ with XOR

$$
p_{c}=p_{c=t r u e} \oplus p_{c=\text { false }}
$$

- After solving, p_{c} describes exactly the values needed for c to determine p

An example using the definitional way

- Let $\mathrm{p}=\mathrm{a} \vee(\mathrm{b} \wedge \mathrm{c})$. What values of b and c will cause a to determine p ?

$$
\begin{aligned}
& \quad p=a \vee(b \wedge c) \\
p_{a} & =p_{a=\text { true }} \oplus p_{a=\text { false }} \\
& =(\text { true } \vee(b \wedge c)) \oplus(\text { false } \vee(b \wedge c)) \\
& =\operatorname{true} \oplus(b \wedge c) \\
& =!(b \wedge c) \\
& =!b \vee!c
\end{aligned}
$$

- "! $b \vee!c$ " means a determines p when either b or c is false

Exercise 1: using the definitional way

- Let $p=a \vee b$. What values of b will cause a to determine p ?

$$
\begin{aligned}
p_{a} & =p_{a=t r u e} \oplus p_{a=\text { false }} \\
& =(\text { true } \vee b) \oplus(\text { false } \vee b) \\
& =\text { true } \oplus b \\
& =!b
\end{aligned}
$$

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \vee \mathrm{b}$
1	T	T	T
2	T	F	T
3	F	T	T
4	F	F	F

- "! b " means a determines p when b is false
- We obtained the same result from reasoning about the truth table

Exercise 2: using the definitional way

- Let $\mathrm{p}=\mathrm{a} \leftrightarrow \mathrm{b}$. What values of b will cause a to determine p ?

	$\quad p=a \leftrightarrow b$
p_{a}	$=p_{a=t r u e} \oplus p_{a=\text { false }}$
	$=($ true $\leftrightarrow b) \oplus($ false $\leftrightarrow b)$
	$=b \oplus!b$
	$=$ true

	\mathbf{a}	\mathbf{b}	$\mathbf{a} \leftrightarrow \mathbf{b}$
1	T	T	T
2	T	F	F
3	F	T	F
$\mathbf{4}$	F	F	T

- "true" means that a always determines p
- We obtained the same result from reasoning about the truth table

Is there a problem with Active Clause Coverage?

- Step 1: For each p in P and each major clause c_{i} in $C p$, choose minor clauses $c_{j}, j!=i$, so that c_{i} determines p.

Active Clause Coverage (ACC) : TR has two requirements for each $c_{i}: c_{i}$ evaluates to true and c_{i} evaluates to false.

- Ambiguity : Must minor clauses have the same values when the major clause is true and when the major clause is false?

Illustrating the ambiguity in ACC

- Recall: a determines p when "! $b \vee!c$ ", i.e., when either b or c is false

```
p=a\vee(b\wedgec)
Major clause : a
a = true, b = false, c = true
a = false, b = false, c = false

\section*{Three options for resolving ACC ambiguity}
- Minor clauses do not need to be the same
- Minor clauses must be the same
- Minor clauses allow the predicate to become both true and false

\section*{Option 1: minor clauses don't need to be the same}
- Step 1: For each \(p\) in \(P\) and each major clause \(c_{i}\) in \(C_{p}\), choose minor clauses \(c_{j}, j!=i\), so that \(c_{i}\) determines \(p\).
- Step 2 (ACC): TR has two requirements for each \(c_{i}\) : \(c_{i}\) evaluates to true and \(c_{i}\) evaluates to false.

General Active Clause Coverage (GACC) : The values chosen for the minor clauses \(c_{j}\) do not need to be the same when \(c_{i}\) is true as when \(c_{i}\) is false, that is, \(c_{j}\left(c_{i}=\right.\) true \()=c_{j}\left(c_{i}=\right.\) false \()\) for all \(c_{j}\) OR \(c_{j}\left(c_{i}=\right.\) true \()!=c_{j}\left(c_{i}=\right.\) false) for all \(c_{j}\).

\section*{Problem: GACC doesn’t subsume Predicate Coverage}

Major clause : a
\begin{tabular}{c|c|c|c|}
\hline & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a} \leftrightarrow \mathbf{b}\) \\
\hline 1 & T & T & T \\
2 & T & F & F \\
3 & F & T & F \\
\(\mathbf{4}\) & F & F & T \\
\hline
\end{tabular}

\section*{Option 2: minor clauses do need to be the same}
- Step 1: For each \(p\) in \(P\) and each major clause \(c_{i}\) in \(C_{p}\), choose minor clauses \(c_{j}, j!=i\), so that \(c_{i}\) determines \(p\).
- Step 2 (ACC): TR has two requirements for each \(c_{i}: c_{i}\) evaluates to true and \(c_{i}\) evaluates to false.

Restricted Active Clause Coverage (RACC) : The values chosen for the minor clauses \(c_{j}\) must be the same when \(c_{i}\) is true as when \(c_{i}\) is false, that is, it is required that \(c_{j}\left(c_{i}=\right.\) true \()=c_{j}\left(c_{i}=\right.\) false) for all \(c_{j}\).

\section*{Exercise 3: using the definitional way}
- Let \(\mathrm{p}=\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})\). What values of b and c will cause a to determine p ?
\[
\begin{aligned}
& \quad p=a \wedge(b \vee c) \\
p_{a} & =p_{a=\text { true }} \oplus p_{a=\text { false }} \\
& =(\text { true } \wedge(b \vee c)) \oplus(\text { false } \wedge(b \vee c)) \\
& =(b \vee c) \oplus \text { false } \\
& =(b \vee c) \\
& =b \vee c
\end{aligned}
\]
- " \(b \vee c\) " means a determines \(p\) when either \(b\) or \(c\) is true

\section*{Example on Restricted Active Clause Coverage}

Major clause : \(\mathrm{a}, \mathrm{P}_{\mathrm{a}}=\mathbf{b} \vee \mathbf{c}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & a & b & c & a \(\wedge(b \vee c)\) \\
\hline \(\mathbf{1}\) & T & T & T & T \\
2 & T & T & F & T \\
3 & T & F & T & T \\
\(\mathbf{4}\) & T & F & F & F \\
\hline \(\mathbf{5}\) & F & T & T & F \\
\(\mathbf{6}\) & F & T & F & F \\
\(\mathbf{7}\) & F & F & T & F \\
\(\mathbf{8}\) & F & F & F & F \\
\hline
\end{tabular}

> RACC \(\left(c_{i}=a\right)\) can only be satisfied by row pairs \((1,5),(2,6)\), or \((3,7)\)
> Only three pairs can be used

\section*{Notes on RACC}
- Does RACC subsume predicate and clause coverage?
- RACC was a common interpretation by developers for FAA
- Problem: RACC often leads to infeasible test requirements

\section*{Option 3: minor clauses allow predicate to be true and false}
- Step 1: For each \(p\) in \(P\) and each major clause \(c_{i}\) in \(C p\), choose minor clauses \(c_{j}, j!=i\), so that \(c_{i}\) determines \(p\).
- Step 2 (ACC): TR has two requirements for each \(c_{i}: c_{i}\) evaluates to true and \(c_{i}\) evaluates to false.

Correlated Active Clause Coverage (CACC) : The values chosen for the minor clauses \(c_{j}\) must cause \(p\) to be true for one value of the major clause \(c_{i}\) and false for the other, that is, it is required that \(p\left(c_{i}=t r u e\right)!=\) \(p\left(c_{i}=\right.\) false).

\section*{Example on CACC}

\[
\text { a determines } P \text { when ( } b=\text { true or } c=\text { true) }
\]

CACC ( \(\mathrm{c}_{\mathrm{i}}=\mathrm{a}\) ) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7-a total of nine pairs

\section*{Notes on CACC}
- CACC implicitly allows minor clauses to have different values
- CACC explicitly subsumes predicate coverage
- Does CACC subsume clause coverage?

\section*{Does CACC subsume clause coverage?}

\[
\text { a determines } P \text { when ( } b=\text { true or } c=\text { true) }
\]

CACC ( \(\mathrm{c}_{\mathrm{i}}=\mathrm{a}\) ) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7-a total of nine pairs

\section*{Infeasibility}
- Consider the predicate: \((a>b \wedge b>c) \vee c>a\)
- Infeasible: \((a>b)=\) true, \((b>c)=\operatorname{true},(c>a)=\) true is infeasible
- As with other criteria, infeasible test requirements must be recognized and dealt with
- Recognizing infeasible test requirements is hard, and in general, undecidable

\section*{Subsumption among Logic coverage criteria}


\section*{An end-to-end example with RACC}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{5}{|l|}{\begin{tabular}{lll}
\(b \&\) & Al & Fin \\
For & Likewise, for clause \(c\), only one pair, \\
diffe & ce cal \\
determme TIE & TFT and TFF, cause \(c\) to determine the
\end{tabular}
value of \(p\)} \\
\hline & a & b & C & \(a \wedge(b \vee c)\) & \(P_{a}\) & \(P_{b}\) & \(P_{c}\) & \\
\hline I & T & T & T & T & 4 & & & In sum, three \\
\hline 2 & T & T & F & T & & 3 & & separate pairs of \\
\hline 3 & T & F & T & T & \(\cdots\) & & 3 & rows can cause a to determine the \\
\hline 4 & T & F & F & F & & 3 &  & value of \(p\), and \\
\hline 5 & F & T & T & F &  & & & only one pair each for \(b\) and \(c\) \\
\hline 6 & F & T & F & F &  & & & \\
\hline 7 & F & F & T & F & 3 & & & \\
\hline 8 & F & F & F & F & & & & \\
\hline
\end{tabular}

How many tests does RACC yield, compared to Combinatorial
Clause Coverage?

\section*{A more subtle exercise on determination}
\[
p=(a \wedge b) \vee(a \wedge!b)
\]
\[
\begin{aligned}
p_{\mathrm{a}} & =p_{\mathrm{a}=\text { true }} \oplus p_{a=\text { false }} \\
& =((\text { true } \wedge b) \vee(\text { true } \wedge!b)) \oplus((\text { false } \wedge b) \vee(\text { false } \wedge!b)) \\
& =(b \vee!b) \oplus \text { false } \\
& =\text { true } \oplus \text { false } \\
& =\text { true }
\end{aligned}
\]
\[
p=(a \wedge b) \vee(a \wedge \neg b)
\]
\[
\begin{aligned}
p_{b} & =p_{b=t r u e} \oplus p_{b=\text { false }} \\
& =((a \wedge \text { true }) \vee(a \wedge \neg \text { true })) \oplus((a \wedge \text { false }) \vee(a \wedge \neg \text { false })) \\
& =(a \vee \text { false }) \oplus(\text { false } \vee a) \\
& =a \oplus a \\
& =\text { false }
\end{aligned}
\]

\title{
A more subtle exercise on determination (2)
}

\section*{\(p=(a \wedge b) \vee(a \wedge!b)\)}
- \(a\) always determines the value of this predicate
- \(b\) never determines the value \(-b\) is irrelevant !
- So, why would anyone write a predicate like this?

\section*{Logic Coverage Summary}
- Predicates are often very simple-in practice, most have <3 clauses
- In fact, most predicates only have one clause!
- Only clause? PC is enough
- 2 or 3 clauses? CoC is practical
- Advantages of ACC criteria can be significant for large (no. of) predicates
- CoC is impractical for predicates with many clauses

Next
- Applying Logic Coverage to source code```

