
CS 5154: Software Testing

Introduction

Owolabi Legunsen



On the state of software quality

~9% of 2017 
US GDP

2



Why learn software testing?

• Testing is usually the last line of defense against bugs

• Testing is widely used by developers for finding bugs

• It will be your job to test software!

3



What this course is about

• Systematic, organized approaches to testing

• You will learn

• how to design and write high quality tests

• cutting-edge testing techniques and tools

• how to apply techniques and tools to (real) code

4



Prerequisites

• You will likely struggle if you didn’t satisfy the prereqs

• We will use knowledge from
• Discrete math
• Java
• Version control with Git, GitHub
• Prog. languages, software engineering, or compilers
• …

5



CS 5154: theory meets practice

• We’ll use some basic theory to answer practical questions

• What inputs should we choose?

• Have we tested software sufficiently?

• How good are our tests?

• ...

6



What this course is not about

• How to develop software for clients

• Basic software engineering knowledge and skills

• A tutorial on Company X’s latest testing tools

7



Some praise for this course

I work with a large enterprise software company. 
One of my main projects is to write tests. By 
applying the concepts that I learned in this class, I 
was able to write a strong test suite which received 
high-praise from my manager and team. This class 
had a direct effect on my efficacy in writing that 
test suite. So, I want to thank you for teaching me 
these concepts and always mentioning the 
practical applications of the concepts. 

8



Meet the course staff

• Instructor: Owolabi Legunsen
• Office Hours: Tue, Thu 2:30–3:30pm, Gates 442A

• TAs
• Ayaka Yorihiro. OH: TBD, TBD
• Richard Palmer. OH: TBD, TBD
• Christian Donovan. OH: TBD, TBD
• Michael Ye. OH: TBD, TBD

9



Course webpage

• https://www.cs.cornell.edu/courses/cs5154/2022fa

• Syllabus
• Announcements
• All lecture materials
• Handy links
• Where to get help @ Cornell

10



Course Communication

• Course email: cs5154-staff@cornell.edu
• Send all questions, comments, complaints, etc.
• We plan to respond within 24 hours
• Plan ahead, don’t wait till due dates!

• We will make announcements on Canvas or CMS

11



Your grade will be based on…

Homework assignments 30%
Readings 5%
In-class participation activities 5%
Pre-announced in-class quizzes 15%
Prelim 1 (10/6) 20%
Prelim 2 (11/15) or Final exam (TBD) 25%

12



Working in a team

• Software engineering (including testing) is a team sport

• Team sizes: ~3

• Form your own teams

13



Questions on course logistics?

14



Now it’s your turn

• Form groups of two or three

• Introduce yourselves

• Brainstorm:

If testing is so widely used, why are 
there still so many software failures?

15



What did your group discuss?

16



Is findQuotient correct?
// Computes remainder and quotient of x÷y
// where x and y are integers
public Pair findQuotient(int x, int y){

int remainder = x;
int quotient = 0;
while (y <= remainder) {

remainder = remainder – y;
quotient = 1 + quotient;

}
return new Pair(remainder, quotient);

}

17



Is findQuotient correct?

Pair findQuotient(int x,int y){
int r = x;
int q = 0;
while (y <= r) {

r = r – y;
q = 1 + q;

}
return new Pair(r, q);

}

Hoare. An axiomatic basis for computer programming. 1969 18



The two approaches in a picture
Co

rr
ec

tn
es

s G
ua

ra
nt

ee

Scale

Formal Verification:
Prove mathematically that a 
program behaves correctly on 
all inputs

Testing: Check if a program behaves 
correctly on a subset of inputs

19

This graph uses notional units



My lab: enhance testing \w formal methods
Co

rr
ec

tn
es

s G
ua

ra
nt

ee

Scale

Formal 
Verification

Runtime Verification (RV): monitor program 
executions against behavioral models obtained 
from formal specifications

20

This graph uses notional units

Testing



Software testing from 3000 miles

Expected 
output

Oracle Pass/Fail

Input

Pros Cons
Easier for most developers Can miss bugs
Scales well in practice Oracle generation is hard
Uses developer insights High maintenance costs

Code

21



The essence of this course
Co

rr
ec

tn
es

s G
ua

ra
nt

ee

Scale

Formal Verification

Testing

How to make testing scale even better? 22

How to improve the guarantees that testing provides?

This graph uses notional units



CS5154 is organized into six themes

23

1. How to automate the execution of tests?

2. How to design and write high-quality tests?

3. How to measure the quality of tests?

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

6. How to deal with bugs that tests reveal?



Theme 1: test automation

• The xUnit paradigm and the JUnit framework

• Parameterized Unit Tests

• The Maven build system

• Continuous Integration (??)

24



Automation: Continuous Integration (CI)

Developers

Version 
Control

Co
m

m
it 

Ch
an

ge
s

1

2

5

Fetch Changes

6
Release/Deploy

25

CI 
Server

?

Pass/Fail



Theme 2: test design

• Goal: systematically derive tests that increase the 
chance to reveal bugs

• We will use only four models of software
• Input space
• Graph structure
• Logic conditions
• Syntax

26



Theme 3: checking test quality

• Question: How do you test your tests?

• We’ll learn about mutation testing

27



Required Text for Themes 1 – 3

• Readings will be assigned from book
• Starting soon

• Copies on reserve @ Uris library

• Copies available via the Bookstore

28



Theme 4: automatic test generation

• Problem: writing tests is very expensive

• 75% of development effort at Microsoft (??)

• “customers pay for features, not tests” 

• Goal: learn about automated test generation

29



Quiz: How many CI cycles per day?

Developers

Version Control

Co
m

m
it 

Ch
an

ge
s

1

2

5

Fetch Changes

6 Release/Deploy

30

CI 
Server

?

Pass/Fail

At companies like 
Microsoft, 
Facebook, Google?

By individual 
developers?



Tests are re-run very frequently

Developers

Version Control

Co
m

m
it 

Ch
an

ge
s

1

2

5

Fetch Changes

6 Release/Deploy

31

CI 
Server

?

Pass/Fail

Cycles per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single OSS: up 

to 80

Releases per day
• Etsy: 50

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;



Re-running tests is very costly

no. of changes per day * no. of tests
quadratic increase in test execution time

• 75+ million tests run per day

• 20+ revisions per minute

http://google-engtools.blogspot.com/2011/06testing-at-speed-and-scale-of-google.html
32



Re-running tests is very costly (2)

~5min

~10min

~45min

1296

361

~4h

~17h

Ru
n 

m
an

y 
tim

es
 e

ac
h 

da
y1667

641534

~45min

~45min

631

test execution time

4975

number of tests

8663
33



Did you deal with long-running tests?

• Q: what’s the longest your tests took to run?

• Q: what do you do while waiting for long-running tests?

34



Theme 5: regression testing

• Re-running tests after every code change is expensive

• Goal: learn cutting-edge techniques and tools for 
making regression testing more efficient and effective

35



Theme 6: dealing with bugs

• Context: your tests revealed a bug. Now what?

• If time permits, we’ll learn about

• Debugging

• Bug Advocacy

36



Questions on course content?

37



A review of today’s class

• Learning outcomes, course content, and logistics

• High-level introduction to Software Testing 

• Comparison of testing with another QA approach

• Whirlwind tour of how this course is organized

38



Next class…

• Testing Foundations

39


