
CS 5154: Software Testing

Implementing
Input Space Partitioning

Owolabi Legunsen

First, a review of some concepts from last class

2

Partitioning the input domain into blocks

• Decide on characteristics of your input domain to partition on

• Assumption: values in each block are equally useful for testing

• Example: Program: void foo(String char) // “char” is a letter
Input domain: Alphabetic letters
Partitioning characteristic: Case of letter

• Block 1: upper case
• Block 2: lower case

3

How to know that partitioning is “correct”?
• Let the input domain be D

• Characteristic q partitions D into set of blocks, Bq= {b1,b2,…,bQ}

• Each partition must satisfy two properties :
1. Blocks must be pairwise disjoint (no overlap)

2. Together the blocks must cover the domain D (complete)

bi ∩ bj = ,  i  j, bi, bj Bq

b = D
b  Bq

b1 b2

b3
4

Partitioning is simple but easy to do wrong

• Consider the characteristic “order of elements in list F”

b1 = sorted in ascending order
b2 = sorted in descending order
b3 = arbitrary order

but … something’s fishy …

What if the list is of length 0 or 1?

The list will be in all three blocks
That is, disjointness is not satisfied

One solution:
Two characteristics that each
address just one property

C1: List F sorted ascending
- c1.b1 = true
- c1.b2 = false

C2: List F sorted descending
- c2.b1 = true
- c2.b2 = false

Design blocks for
that characteristic

Can you find
the problem?

Can you think of
a solution?

5

But, how does one implement ISP in practice?

6

Recall: steps in MDTD

• Move from implementation level to abstraction level

• At the abstraction level, define test requirements and find input
values that satisfy them

• Back in the implementation level: write, run, and evaluate tests for
the inputs

7

How to implement these steps for ISP?

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

8

The five ISP steps by example

• Consider method triang() from class TriangleType :
• http://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
• http://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

/** side1, side2, and side3 are lengths of the sides of a triangle
* Returns the appropriate enum value
**/

public static Triangle triang (int side1, int side2, int side3)

9

Step 1: Identify testable functions in TriangleType

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

/** side1, side2, and side3 are lengths of the sides of a triangle
* Returns the appropriate enum value
**/

public static Triangle triang (int side1, int side2, int side3)

10

Identifying testable functions more generally

• Individual methods have one testable function
• What if the method is private?
• What if a method calls other methods?

• Each method in a class should be tested individually

• But methods in a class may share characteristics that you can reuse

11

Step 2: Find input parameters for triang()

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

/** side1, side2, and side3 are lengths of the sides of a triangle
* Returns the appropriate enum value
**/

public static Triangle triang (int side1, int side2, int side3)

12

Finding input parameters for testable functions

• Simple step, but be careful to identify all parameters

• Remember to check if program state is an input parameter

• Remember to check if data sources are input parameters

findInFile(String key) // find key in a file

add(E e) // add element e to Set

13

Step 3: Model the input domain for triang()

• Consider only parameter types or the functionality of triang()?

• How to combine values obtained from IDM of all parameters?

• What is the correct IDM for triang()?

public static Triangle triang(int side1, int side2, int side3)

14

Two approaches to IDM

• Interface-based: develop characteristics only from input parameters
• e.g., triang() takes three ints

• Functionality-based: use behavioral view to develop characteristics
• e.g., triang() returns a Triangle

• Which approach should we use?

15

Interface-based IDM: Example

• Input domain:
• Partitioning characteristic:

• Block 1:
• Block 2:
• Block 3:

/** side1, side2, and side3 are lengths of the sides of a triangle
* Returns the appropriate enum value
**/

public static Triangle triang (int side1, int side2, int side3)

16

Interface-based IDM: Pros and Cons

 easy to identify characteristics and translate to test cases

 almost mechanical to follow

 may not encode all the information that we know

 can miss tests if functionality depends on combination of values

17

Functionality-based IDM: Example

• Input domain:
• Partitioning characteristic:

• Block 1:
• Block 2:
• Block 3:

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

/** side1, side2, and side3 are lengths of the sides of a triangle
* Returns the appropriate enum value
**/

public static Triangle triang (int side1, int side2, int side3)

18

Functionality-based IDM: Pros and Cons

 allows incorporation of semantics or domain knowledge

 can be done earlier from requirement specifications

 harder to develop characteristics, e.g., large systems, missing specs

 harder to generate tests; characteristics don’t map to one parameter

19

Poll: which approach should we use

• Interface-based

• Functionality-based

• Both

• None

20

Questions so far?

21

We started a systematic way of doing ISP

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

22

In-Class Exercise

23

Create two IDMs for findElement () :
1) Interface-based

2) Functionality-based

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// return true if element is in the list, false otherwise

An interface-based IDM for findElement

24

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// return true if element is in the list, false otherwise

Two parameters : list, element

Characteristics for list :
list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

Characteristics for element :
element is null (block1 = true, block2 = false)

A functionality-based IDM for findElement

25

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// return true if element is in the list, false otherwise

Functionality-Based Approach
Two parameters : list, element
Characteristics :

number of occurrences of element in list (0, 1, >1)
element occurs first in list (true, false)
element occurs last in list (true, false)

Compare and contrast the two IDMs?

26

Interface-Based IDM
Two parameters : list, element
Characteristics for list :

list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

Functionality-Based IDM
Two parameters : list, element
Characteristics :

number of occurrences of element in list (0, 1, >1)
element occurs first in list (true, false)
element occurs last in list (true, false)

One question that you may have

How does one design characteristics
for the input domain?

27

Hints: designing functionality-based IDM characteristics

• Consider implicit or explicit preconditions

• Consider implicit or explicit postconditions

• Consider relationships among parameters

28

m(Object x, Object y)

int choose() // select a value

// withdraw amount from balance
withdraw(double balance, double amount)

Hints on designing characteristics (2)

• Consider factors other than parameters (e.g., “global variables”)

• Characteristics that yield fewer blocks tend to be complete & disjoint
• many characteristics with few blocks > few characteristics with many blocks

• As much as possible, do not use current code in your design.
• Use domain knowledge, specification, etc.

29

Database db = …;
withdraw(double balance, double amount)
{ … // persist result to db }

Other questions that you may be asking

How to create blocks from partitions?

How to select representative values from
each block?

30

A checklist on choosing blocks and values

1. Does each partition allow all valid and invalid values? (completeness)

2. Can you further partition blocks to exercise different functionality?

3. Did you consider boundary values?

4. Does union of blocks in a characteristic cover the input space?

5. Does a value belong to more than one block for a characteristic?

31

Questions so far?

32

Characteristics can be refined to get more tests

• triang() characteristic: relation of each side to 0

• Max no. of tests: 3*3*3 = 27 (some are valid triangles, others are not)
• How can we refine this characteristic to obtain more tests?

33

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” positive equal to 0 negative

q2 = “Relation of Side 2 to 0” positive equal to 0 negative

q3 = “Relation of Side 3 to 0” positive equal to 0 negative

A refinement that yields more tests

• Max. no. of tests is now: 4*4*4 = 64

34

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Refinement should still yield correct partitioning!

• Suppose that triangle sides were floating point numbers.
• Do you see a problem with this partitioning?
• Problem: No values between 0 and 1 will be chosen! (incomplete)

35

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Choosing values after refinement

36

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Values for partition q1

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary conditions!

Be careful with functionality-based IDM too!

37

A Geometric Characterization of triang()’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

What’s wrong with
this partitioning?

• Equilateral is also isosceles !
• We need to refine the example to make the partitioning valid

Characteristic B1 B2 b3 b4

q1 = “Geometric Classification” Scalene
isosceles,

not
equilateral

equilateral invalid

Corrected Geometric Characterization of triang()’s Inputs

Choosing values for functionality-based IDM

38

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene
isosceles,

not
equilateral

equilateral invalid

Possible values for geometric partition q1

Characteristic b1 b2 b3 b4

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

Recall: IDM is a design activity

39

A Geometric Characterization of triang()’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

Can you think of an
alternative way to

refine this partition?

An alternative refinement
• Break the geometric characterization into four characteristics

• Then, impose constraint:
• Equilateral = True implies Isosceles = True

40

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

One last question to answer on IDM

How to consider multiple partitions
simultaneously?

What combination of blocks should we
choose values from?

41

We started a systematic way of doing ISP

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

42

Next: finish a systematic way of doing ISP

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

43

