
CS 5154: Software Testing

Coverage Criteria and
Input Space Partitioning

Instructor: Owolabi Legunsen

Fall 2021

The next step in ISP require coverage criteria

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

2

But what is a coverage criterion?

3

Example 1: statement coverage criterion

• What elements of software should tests exercise?

• What rule do we want to impose on the tests?

• How do we check if the rule is satisfied?

4

Example 2: branch coverage criterion

• What elements of software should tests exercise?

• What rule do we want to impose on the tests?

• How do we check if the rule is satisfied?

5

These questions point to general concepts

• What elements of software do should tests exercise?
• Test requirements

• What rule(s) do we want to impose on the tests?
• Coverage criteri{a,on}

• How do we measure the degree to which the rules are met?
• Coverage level

6

Defining these three concepts generally
• Test Requirement : A software element that a test must satisfy or cover

• Coverage Criterion : A rule or collection of rules that impose test
requirements on a set of tests

• Coverage : Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test requirement
tr in TR, there is at least one test t in T such that t satisfies tr

7

We saw these concepts in CS5154 (indexOf)

45

3

2

1

Graph: abstract version Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements
for Edge-Pair
Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

8

Question for you

• Program P has six if statements. How many test requirements does
the branch coverage criteria impose on tests for P?

 2 * 6

 2 ^ 6

9

Question for you

Why do we need these general and fairly abstract definitions?

10

Do we always want 100% coverage?

• Coverage level : The ratio of the number of test requirements
satisfied by T to the size of TR

• What if
• we just started writing the code for our program?
• 100% coverage is too expensive to attain?
• we just want to get a sense of how we are doing?

• It sometimes makes sense to measure the degree of coverage

11

Is 100% coverage always possible?

• Coverage : Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test requirement
tr in TR, there is at least one test t in T such that t satisfies tr

• What if some tr is impossible to satisfy?
• Example: dead code

• An infeasible test requirement is one that cannot be satisfied

12

How to handle infeasible test requirements?

• Drop infeasible tr from TR

• Replace infeasible tr with less stringent TR

• Other thoughts?

13

Quiz: Who said it?

Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and

dedicated to the proposition that all
men are created equal.

14

Are all criteria born equal?
• These tests satisfy 100% statement coverage but miss a fault

int stringFactor(String i, int n) {
if (i != null || n !=0)
return i.length()/n;
else
return -1;

}
// Tests: (“happy”, 2), (null, 0)

• Trick question: Will tests that satisfy 100% branch coverage find the fault?

• Teaser: “stronger” criteria can help, e.g., Multiple Condition Decision Coverage
15

Subsumption: comparing criteria “strength”

• Criteria Subsumption : Test criterion C1 subsumes C2 if and only if
every set of test cases that satisfies C1 also satisfies C2

• Examples that we have seen in CS 5154:

• Branch coverage subsumes statement coverage

• Edge-Pair coverage subsumes edge coverage

16

Homework: Set relationships in subsumption

• Let C1 and C2 be two distinct coverage criteria whose sets of test
requirements are TR(C1) and TR(C2), respectively. If C1 subsumes C2,
which of the following is correct?

 TR(C1) is a superset of TR(C2)

 There is a many-to-one relation between TR(C1) and TR(C2)

 There is a one-to-many relation between TR(C1) and TR(C2)

17

Questions about coverage criteria

18

So, how can criteria help us with ISP?

• triang() characteristic: relation of each side to 0

• How should we consider multiple partitions at the same time?
• What combination of blocks should we choose values from?

Characteristic b1 b2 b3 b4

q1 greater than 1 equal to 1 equal to 0 less than 0

q2 greater than 1 equal to 1 equal to 0 less than 0

q3 greater than 1 equal to 1 equal to 0 less than 0

19

Idea 1: choose all combinations

• All Combinations Coverage (ACoC) Criterion: All combinations of
blocks from all characteristics must be used.

• The number of resulting test inputs is the product of the number of
blocks in each characteristic :

 i

20

ACoC for triang()
Characteristic b1 b2 b3 b4

q1 greater than 1 equal to 1 equal to 0 less than 0

q2 greater than 1 equal to 1 equal to 0 less than 0

q3 greater than 1 equal to 1 equal to 0 less than 0

Characteristic b1 b2 b3 b4

q1 2 1 0 -1
q2 2 1 0 -1
q3 2 1 0 -1

• Owolabi relabeled the blocks using same values in corresponding
blocks for each characteristic for illustration purposes only:

21

ACoC test inputs for triang()
2 2 2
2 2 1
2 2 0
2 2 -1

2 1 2
2 1 1
2 1 0
2 1 -1

2 0 2
2 0 1
2 0 0
2 0 -1

2 -1 2
2 -1 1
2 -1 0
2 -1 -1

1 2 2
1 2 1
1 2 0
1 2 -1

1 1 2
1 1 1
1 1 0
1 1 -1

1 0 2
1 0 1
1 0 0
1 0 -1

1 -1 2
1 -1 1
1 -1 0
1 -1 -1

0 2 2
0 2 1
0 2 0
0 2 -1

0 1 2
0 1 1
0 1 0
0 1 -1

0 0 2
0 0 1
0 0 0
0 0 -1

0 -1 2
0 -1 1
0 -1 0
0 -1 -1

-1 2 2
-1 2 1
-1 2 0
-1 2 -1

-1 1 2
-1 1 1
-1 1 0
-1 1 -1

-1 0 2
-1 0 1
-1 0 0
-1 0 -1

-1 -1 2
-1 -1 1
-1 -1 0
-1 -1 -1

ACoC yields 4*4*4 = 64 test inputs for triang()!

This is almost certainly more than we need

Only 8 inputs have 3 sides greater than zero

22

Idea 2: use at least one value from each block

• Each Choice Coverage (ECC) Criterion : One value from each block for
each characteristic must be used in at least one test case.

• The number of resulting tests is at least the largest number of blocks
among all characteristics :

i

23

ECC Example

• These three tests satisfy ECC: (A, 1, x), (B, 2, y), (A, 3, x)
• There are many ways to pick tests that satisfy ECC
• Do you see a weakness of ECC?
• ECC doesn’t require combining a value with other values

• e.g., (A, 2, y) may reveal a fault

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

24

Idea 3: require pair-wise combinations

• Pair-Wise Coverage (PWC) Criterion : A value from each block for
each characteristic must be combined with a value from every block
for all other characteristics.

• The resulting number of tests is at least the product of the size of the
two largest characteristics:

Q
i=1 i

Q
j=1, j!=i j

25

PWC Example

• 5 combinations with A: (A, 1), (A, 2), (A, 3), (A, x), (A, y)
• 5 combinations with B: (B, 1), (B, 2), (B, 3), (B, x), (B, y)
• 6 combinations with q2 and q3 values: (1, x), (1, y), (2, x), (2,y), (3, x), (3, y)
• These 16 combinations can be combined in several ways:

(A, 1, x) (A, 2, x) (A, 3, x) (A, -, y)
(B, 1, y) (B, 2, y) (B, 3, y) (B, -, x)

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

26

Idea 4: extend pairwise to t-wise

• Problem(?): pair-wise only requires all two-combination values
• e.g., we may not choose (A, 2, y) on the previous slide

• The fault may be revealed by checking t-combinations

• t-Wise Coverage (TWC) Criterion : A value from each block for each
group of t characteristics must be combined

27

Some questions about t-wise coverage

• What is the least number of resulting tests?

• What happens if t is equal to the number of characteristics?

• Does t-wise coverage help much more than pair-wise coverage?

28

A note on the ISP criteria that we saw so far

29

Idea 5: use domain knowledge

• Base Choice Coverage (BCC) Criterion :
1. A base choice block is chosen for each characteristic, and a base test

is formed by using the base choice for each characteristic.
2. Subsequent tests are chosen by holding all but one base choice

constant and using each non-base choice in each other characteristic

• The resulting number of tests: one base test + one test for each other block

• BCC allows using domain knowledge to select the base choice blocks
30

Q
i=1 i

BCC Example

• Let ‘A’, ‘1’, and ‘x’ be the base choice blocks in q1, q2, and q3 respectively

• Base choice test: (A, 1, x)

• Additional tests: (B, 1, x)
(A, 2, x)
(A, 3, x)
(A, 1, y)

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

31

Idea 6: choosing more than one base choice?

• Multiple Base Choice Coverage (MBCC) Criterion :
• At least one, and possibly more, base choice blocks are chosen for

each characteristic, and base tests are formed by using each base
choice for each characteristic at least once.

• Subsequent tests are chosen by holding all but one base choice
constant for each base test and using each non-base choice in
each other characteristic.

• See textbook for the formula of upper bound of resulting tests

32

Recap on ISP coverage criteria

33

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

All Combinations
Coverage

ACoC

Each Choice
Coverage

ECC

Which of these criteria subsume the other(s)?

Subsumption among ISP criteria

34

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

All Combinations
Coverage

ACoC

Each Choice
Coverage

ECC

Summary: Input Space Partitioning

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

35

Next…

• Graph-based Model-Driven Test Design

36

